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UPLOADED BY AHMAD JUNDI

PREFACE TO THE INSTRUCTOR

This Instructor's Solutions Manual contains the solutions to every exercise in the 12th Edition of THOMAS' CALCULUS
by Maurice Weir and Joel Hass, including the Computer Algebra System (CAS) exercises. The corresponding Student's
Solutions Manual omits the solutions to the even-numbered exercises as well as the solutions to the CAS exercises (because
the CAS command templates would give them all away).

In addition to including the solutions to all of the new exercises in this edition of Thomas, we have carefully revised or
rewritten every solution which appeared in previous solutions manuals to ensure that each solution

conforms exactly to the methods, procedures and steps presented in the text

is mathematically correct

includes all of the steps necessary so a typical calculus student can follow the logical argument and algebra
includes a graph or figure whenever called for by the exercise, or if needed to help with the explanation

is formatted in an appropriate style to aid in its understanding

Every CAS exercise is solved in both the MAPLE and MATHEMATICA computer algebra systems. A template showing
an example of the CAS commands needed to execute the solution is provided for each exercise type. Similar exercises within
the text grouping require a change only in the input function or other numerical input parameters associated with the problem
(such as the interval endpoints or the number of iterations).

For more information about other resources available with Thomas' Calculus, visit http://pearsonhighered.com.
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CHAPTER 1 FUNCTIONS

1.1 FUNCTIONS AND THEIR GRAPHS

11.

12.

13.

14.

domain = (—o0, 00); range = [1, c0) 2. domain = [0, c0); range = (—o0, 1]
domain = [-2,00); y inrange andy = 4/5x + 10 0 = y can be any positive real number = range = [0, c0).
domain = (—00,0] U [3, 0); y inrange and y = /x> — 3x 0 = y can be any positive real number = range = [0, o).

domain = (—00,3) U (3, 00); y in range and y = nowift<3 =3 —t>0= ﬁ > 0,orift >3

4
3-v
=3 — t < 0= 375 < 0=y can be any nonzero real number = range = (—oc, 0) U (0, c0).
domain = (—o0, —4) U (—4, 4) U (4, 00); y in range and y = ﬁ, nowift< —4 =1t — 16> 0= ﬁ > 0, or if

—4<t<4=-16< - 16<0=> -2 < 72 <0,0rift >4 = — 16 >0= 52 > 0=y canbeany

nonzero real number = range = (—oo, —z] U (0, 00).

(a) Not the graph of a function of x since it fails the vertical line test.
(b) Is the graph of a function of x since any vertical line intersects the graph at most once.

(a) Not the graph of a function of x since it fails the vertical line test.
(b) Not the graph of a function of x since it fails the vertical line test.

base = x; (height)? 4 (%)2 =x?> = height = ? x; area is a(x) = 3 (base)(height) = 1 (x) (%x) = \/TE x%;

perimeter is p(Xx) = X + X + x = 3x.

. s =sidelength = 2 +s2=d> = s:%;andareaisa:s2 = a=1d

Let D = diagonal length of a face of the cube and ¢ = the length of an edge. Then (2 + D? = d? and
3/2

D2=202 = 32=¢2 = (= dg . The surface area is 6¢2 = 67‘12 = 2d? and the volume is £3 = (%) = % )

S

The coordinates of P are (x, \/;) so the slope of the line joining P to the origin is m = Vx % (x > 0). Thus,

(x VX)) = (s )

2X+4y:5:>y:—%x+%;L:\/(X—O)Z—i—(y—O)z:\/x2+(—%x+%)2:\/xz—i—%xz—%x—i—%

— /552 _ 3 25 _ /20x2—20x+25 _ \/20x2—20x +25
= \/4X Xt = \/ 16 = 3

y=Vx=3=y +3=xL=/(x-42+(-02=/(?+3-42+y2=/(y> - 1)2 +y?
=V -2yt Ly =y -y 4]

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI

2 Chapter 1 Functions
15. The domain is (—o0, 00). 16. The domain is (—o0, 00).
y y

AN\ f@=5-2

st
Ny 12
i f(%\z_

41
17. The domain is (—o0, 00). 18. The domain is (—oo, 0].
sk
8(-\')=\/: 2+
Wk
R >t
1+
19. The domain is (—oo, 0) U (0, 00). 20. The domain is (—oo, 0) U (0, co).
y G(t)

L L
-4 -3-2-1 1 2 3 4 G(t)=l
> I

21. The domain is (—oo, —5) U (=5, =3] U [3,5) U (5, 00) 22. The range is [2, 3).

23. Neither graph passes the vertical line test
() (b)

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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Section 1.1 Functions and Their Graphs 3

24. Neither graph passes the vertical line test
(a) (b)

/! | NN

x+y=1 y=1-x
x+yl=1<¢« or = or
Xx+y=-1 y=-1-x
25. | x |01 26. |x [0 12 ,
ylO[1]O0 y|1 0 1
1\‘\
* S ) B B R
B _ I-x, 0<x<1
- )_{2-,‘, l<x<2
27 Fx) = { 47X x<1 28 G(x) = { ¥ ¥ <0
) Tl x342x x> 1 ’ T lx 0<x
y y
4\/y=x2+2x M3
- -2
i F1
i 2 L
1 I_ 1 i 1 1 X 1 2 3 X
- F-1
y=4-x I 2 ‘={% x<0
- -_3 x, 0<x

29. (a) Line through (0, 0) and (1, 1): y = x; Line through (1, 1) and (2, 0): y = —x + 2
x, 0<x<1
f(X)_{x+2, 1<x<2
, 0<x«1

2
0, 1<x<2
® =92 2<x<3
0

, 3<x<14

30. (a) Line through (0, 2) and (2, 0):y = —x +2
Line through (2, 1) and (5, 0):m = 2=4 = =l = —f,soy = —3(x —2) + 1= —3x + 3
fx) — x4+ 2, 0<x<2
) = —%x—i—g, 2<x<5
(b)ljneunough(—1,o)and(0,—3)nn:=(;i:% = -3,50y=—-3x—3
Line through (0, 3) and (2, —1):m= =/=2 = 5! = -2, s0y = —2x + 3
fx) = -3x—-3, -1 <x<0
1 —2x+3, 0<x<2

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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32.

33.

34.

35.

36.

UPLOADED BY AHMAD JUNDI
Chapter 1 Functions
(a) Line through (—1, 1) and (0, 0): y = —x

Line through (0, 1) and (1, 1):y =1
Line through (1, 1) and (3, 0):m = -1 =5l = —f,soy=—3(x - 1)+ 1=—1x+3

31 2
—X -1<x<0
f(x) = 1 0<x<1
—Ix+3 1<x<3
(b) Line through (=2, —1) and (0, 0): y = 1x 1x —-2<x<0
Line through (0, 2) and (1, 0): y = —2x + 2 fix) =9 —2x+2  0<x<1
Line through (1, —1) and (3, —1):y = —1 -1 l<x=<3
(a) Line through (3, 0) and (T, 1):m:%:%,soy:%(xf%)+0:%x71
0,0<x< 71
=120 1 1oyor
Fx—1, §<X§T
A, 0<x<1T
—A, 7<x<T
b f — 7 2_
() fx) A, T<x<3
—-A, T <x<oT
(@) |x] =0forx e [0,1) (b) [x] =0forx e (—1,0]

|x] = [x] only when x is an integer.

For any real number x, n < x < n+ 1, where n is an integer. Now:n <x <n+1= —(n+1) < —x < —n. By

definition: [—x] = —nand |x] =n = —|x| = —n. So [—x] = —|x] forall x € R.
To find f(x) you delete the decimal or y
fractional portion of x, leaving only
the integer part. 3 —o
2 *—o
1 *—0
=3 =2 -? ? 2 3 X
o—=e -1
lxJ, x>0
o—e -2+ f(x)=
[xT, x <0
o—e -3

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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Section 1.1 Functions and Their Graphs 5
37. Symmetric about the origin 38. Symmetric about the y-axis
Dec: —o0o < x < 00 Dec: —0o <x <0
Inc: nowhere Inc:0 <x < o0
y Y
2
2F y=-x® r) *
1 _é 1 1 I2 1 x
,2_
39. Symmetric about the origin 40. Symmetric about the y-axis
Dec: nowhere Dec: 0 < x < o0
Inc: —co <x <0 Inc: —oco < x <0
0<x<o0
y
3-
=
YT
1
] 3 x
al

41. Symmetric about the y-axis 42. No symmetry
Dec: —co <x <0 Dec: —co <x <0
Inc: 0 < x < © Inc: nowhere

-1

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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43.

45.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

UPLOADED BY AHMAD JUNDI

Chapter 1 Functions

Symmetric about the origin 44. No symmetry
Dec: nowhere Dec: 0 <x <
Inc: —oc0 < x < 0 Inc: nowhere

y Y

No symmetry 46. Symmetric about the y-axis
Dec: 0 <x < o0 Dec: —co <x <0
Inc: nowhere Inc: 0 < x < o0

y y

2 =
2/3
y=(=x)

.\,_
=
o |
o |

8 6 4 2

Since a horizontal line not through the origin is symmetric with respect to the y-axis, but not with respect to the origin, the
function is even.

f(x) =x° = L and f(—x) = (—x) > = —L; = — (%) = —f(x). Thus the function is odd.

Since f(x) = x2 + 1 = (—x)® + 1 = —f(x). The function is even.

Since [f(x) = x? + x] # [f(—x) = (=x)* — x] and [f(x) = x2 4 x] # [~f(x) = —(x)® — x] the function is neither even nor
odd.

Since g(x) = x® + x, g(—x) = —x* — x = —(x3 + x) = —g(x). So the function is odd.
g(x) =x* +3x2 — 1 = (=x)* + 3(—x)? — 1 = g(—x), thus the function is even.

gx) = 5 = —1 = g(—x). Thus the function is even.

g(x) = =7 g(—x) = — %5 = —g(x). So the function is odd.
h(t) = 255 h(—t) = =1~; —h(t) = ;1. Since h(t) # —h(t) and h(t) # h(—t), the function is neither even nor odd.

Since || = | (—t)*|, h(t) = h(—t) and the function is even.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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Section 1.1 Functions and Their Graphs 7

. h(t) =2t + 1, h(—t) = =2t + 1. So h(t) # h(—t). —h(t) = —2t — 1, so h(t) # —h(t). The function is neither even nor

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

odd.

h(t) =2|t| +1and h(—t) = 2| —t| + 1 = 2|t| + 1. So h(t) = h(—t) and the function is even.

s=kt=25=k(75) = k=3

=s=13660=3t=t=180

K =cv? = 12960 = c(18)> = ¢ = 40 = K = 40v2; K = 40(10)* = 4000 joules

Ir = -

P=

24.

10=2%o5=12

k 12
s s’ s 5

S6=ksk=2d=r1=

K k=14700 =P =

k —
y = 147 = 1000

14700; 93,4 = 14700 = y = 24500 ~ 628.2 in’

v=1f(x) = x(14 — 2x)(22 — 2x) = 4x* — 72x> + 308x; 0 < x < 7.

(a) Leth = height of the triangle. Since the triangle is isosceles, AB 2 + AB2 =22 = AB = /2. So,

(b)

(a)
(b)
(©)

(a)
(b)
(©)

(a)

2
h? + 12 = (\/E) —h =1= Bisat (0, 1) = slope of AB = —1 = The equation of AB is

y=1fx)=—x+1;x€[0, 1].
A(x) =2xy =2x(—x+1) = —2x> + 2x; x € [0, 1].

Graph h because it is an even function and rises less rapidly than does Graph g.

Graph f because it is an odd function.

Graph g because it is an even function and rises more rapidly than does Graph h.

Graph f because it is linear.
Graph g because it contains (0, 1).
Graph h because it is a nonlinear odd function.

From the graph, 5 > 1+ % = x € (—2,0) U (4, 00)

X 4 X 4
(b)§>1+;$§—1—;>0
.X 4 x2—2x—8 x=4(x+2)
= X > 4 since x is positive; X
.OX 4 x2—2x—8 x=4(x+2) = X
Xx<0: 3 -1-1>0= 2= <0 = =<0 flx) =5
(4,2)

= X < —2 since X is negative;
sign of (x — 4)(x + 2)
+ _ +
-2 4
Solution interval: (—2,0) U (4, c0)

Copyright © 2010 Pearson Education, Inc.
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68.

69.

70.

71.

72.

1.2
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Chapter 1 Functions

,Xl<m:>X€(—oo—5)U(—l,l) Y
(b) Casex < —1: 25 < ﬁ = 3(’”'1) >2 \
- X x i f(x) =3/(x-1)
= 3x+3< 2x—2 = x < 5.

Thus, x € (—o00, —5) solves the inequality.

3(x+1) .
Case -1 <x < 1: x—<x—+1:> 1 <2 - : .

(a) From the graph

= 3x+3>2x—2 = X > —5 whichis true
if x > —1. Thus, x € (—1, 1) solves the
inequality.

Case 1 < x: x_<x+_l = 3X+3<2x—2 = x< -5
which is never true if 1 < X, so no solution here.

(-5,-3)

f(XE) =3/(x-1)

In conclusion, x € (—oo, —=5)U (—1,1).

A curve symmetric about the x-axis will not pass the vertical line test because the points (x, y) and (x, —y) lie on the same
vertical line. The graph of the function y = f(x) = 0 is the x-axis, a horizontal line for which there is a single y-value, 0,

for any x.

price = 40 + 5x, quantity = 300 — 25x = R(x) = (40 + 5x)(300 — 25x)
X33 =P = x = By = Y cost = 5(2x) + 10h = C(h) = 10(¥3%) + 10h = 5h(v/2 +2)

(a) Note that 2 mi = 10,560 ft, so there are \/ 8002 + x?2 feet of river cable at $180 per foot and (10,560 — x) feet of land

cable at $100 per foot. The cost is C(x) = 1804/8002 + x2 + 100(10,560 — x).
(b) C(0) = $1,200,000
C(500) ~ $1,175,812
C(1000) ~ $1, 186,512
(1500) ~ $1,212,000
(2000) ~ $1,243,732
C(2500) ~ $1,278,479
C(3000) ~ $1,314,870
Values beyond this are all larger. It would appear that the least expensive location is less than 2000 feet from the

aQ

point P.
COMBINING FUNCTIONS; SHIFTING AND SCALING GRAPHS
Di: —oo<x<00,Dy: x 1 = Dy, =Dt x 1Rt —co<y<oo,Riiy O, Ryt y LRyy O

Di: x4+1 0=x —-1,Di:x—-1 0 = x 1. Therefore D;,, = Dy,: x 1.
Ri=R;:y ORu:y \/E,ng: y O

D;: —00 <X < 00,D,: —00 <X <00, Dyt —00 <X <00,Dgpp: —00<x <00, Re: y=2,R,: 'y 1,
Ryt 0<y<2,Ryy: 3 <y<oo

Di: —0c0o<x<00,Dy: x 0,Dpt x 0,Dye: x O;Ri: y=1,R,: y 1,Rf/g:0<y§1,Rg/f:1§y<oo

(a) 2 (b) 22 (c) x2+2
(d x+52%-3=x2+10x+22 (e) 5 6 -2
(g x+10 (h) x2-32-3=x-6x2+46

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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— 1= =

() 2 © &

11.

12.

13.

14.

15.

16.

x+1
@ © 0 ® 3
(8 x— (h) ﬁZé:ﬁ%
(fogoh)(x) = f(g(h(x))) = f(g(4 — x)) = f(3(4 —x)) =f(12 —3x) = (12 —3x) + 1 = 13 — 3x
(fogoh)(x) = f(g(h(x))) = f(g(x?)) = f(2(x*) — 1) = f(2x> — 1) = 3(2x%> — 1) + 4 = 6x>+1
(fogoh)(x) = f(e(h(x))) = f(2(})) = () = () = /13 + 1= /355
(fogoh)(x) = (e(h(x))) = £(e(V2—x)) = f((g:)*{]) i3z = B2 -
(@ (fog)(x) (b) (jog)(x) (© (gog)(x)
(@) (joj)(x) (e) (gohof)(x) (f) (hojof )(x)
(@) (foj)(x) (b) (goh)(x) (©) (hoh)(x)
(d) (fof)(x (€ (jogef)(x) () (gofoh)(x)
g(x) f(x) (fog)x)
@ x-—7 VX Vx—17
b)) x+4+2 3x 3x+2)=3x+6
© x? VXx—5 x2—5
d =5 e Tilix ooy = X
e L 1+1 X
® ! : s
(@) (fog)(x) = | )| =
(b) (fog)(x) = x :x+1:>1_$:x+1:>1_in:ix)éxi1:$’sog(x):x+l'
(c) Since (fog)(X) = Vex) = [x], g(x) = x*.
(d) Since (fog)(x) = f(1/x) = |x|, f(x) = x2. (Note that the domain of the composite is [0, c0).)
The completed table is shown. Note that the absolute value sign in part (d) is optional.
g(x) f(x) (fog)(x)
= x| =
x+1 X;I xil
% NG A
NG < x|
(@) f(g(-1)) =1(1) =1 (b) g(f(0)) =g(=2) =2 (©) f(f(=1)) =f(0) = =2
(d) g(g(2)) =2(0)=0 (e g(f(=2)) =g(1) = -1 () f(g(1)) =1f(-1)=0
(a) f(g(0))=1f(—-1)=2—(-1)=3,whereg(0)=0—1=—1
() g(f(3)) =g(-1)=—(-1)=1,where f(3) =2 -3 = —1
© glg(=1) =g(1) =1-1=0,where g(-1) = —(-1) =

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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17.

18.

19.

20.

21.

22.

23.

24,

25.

27.

(d)
(e)
)

(a)

(b)
(©

(a)

(b)
(©)

Chapter 1 Functions

Domain (fog): (—oo, —1] U (0, c0), domain (gof): (—1, 00)
Range (fog): (1, 00), range (gof): (0, 00)

(fog)(x) = flg(x) = 1~ 2¢/X +x
(gof)(x) = g(f(x)) = 1 = [x|
Domain (fog): [0, co), domain (gof): (—o0, 00)

Range (fog): (0, co), range (gof): (—oo, 1]

UPLOADED BY AHMAD JUNDI

(fog)(x) = x = f(g(x)) = x = &5 =x = g(x) = (g(x) = 2)x =x - g(x) — 2x

g(x) -2
2x 2

= g(x) —x-g(x) = 2x = g(x) = =775 = Ty

(fog) (x) = x +2 = f(g(x)) = x+2 = 2(g(x)’ =4 =x+2 = (g(x))

(a)

(a)

()

(a)

y=—(x+7)? (b) y=—(x—4)
y=x2+3 (b) y=x*-5
Position 4 (b) Position 1 (c) Position 2

X

+
=
aq
—~
>
~—
I
>
+
(=)}

(d) Position 3

y=—-x-1D*4+4 (b) y=-x+2?>+3 © y=-x+47>-1 d y=-x-2)7

26.

x2+y2=49

+4°+(y-37=25

y

Y

x+2)2+ @ +3)2=49

28.

Y 3
y+l=@x+1)
y=x3

b
|
L
T o
—

-3 2 -1

y=x_"
.,
1 2 3
(1=
y+l=()(—l)2/3

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



29.

31.

33.

35.

37.

39.

-0.81

4

UPLOADED BY AHMAD JUNDI
Section 1.2 Combining Functions; Shifting and Scaling Graphs

. y
05
-05p
_1_
-15F
42_
25
_3_
. s
_\’+5=%(x—l+l)+5
.l oF ve L
,\_2(x+])+§/ ory=-x
e s
. ,L
1 1 1 1 1 1 X
75 -5 -2 25 5 75
2F
4}
6
34,
y
|
e
|_‘5
o
o
14
[N
i
k]
|
,
Fo ,-_L
1 “‘7\2
F 1
’ \\
.l L-J-1 S=-d 1 x
- 4/ \| 2 4 o
r~—
1
y+1l=
(x +2) 2

38.

40.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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12 Chapter 1 Functions

41.
y
v )23
1 1 1
3 2 -l % [
43.
y
1
/;// 0 \\;\~x
-1
y=1-x2
45.
y=\l3x—1 -1
| 1 5
12 3
(1,-1)
47.
y
|
2 F : _ 1
! Y x=2
1+ |
|
1 : 1 1
L x
9 1 2 3 4
.
-1} !
:
2+
:
49.
y
3 \
__________ 2____________
1
=—+2
LY
1 1 1 1 1 1 x
3 2 - \‘o 1 2 3
51.
y
4
3
2
1

UPLOADED BY AHMAD JUNDI

42.
y
y=(-g?
2
1 1 1 1 x
5 810 15 20
-2
44,
y
2_
1 1 1 1
4 2 2 i
,2_
) y+4=x23
76_
46.
y
10
8_
6_
)'=()<+2)3/2+1
-2.1) oL
1 1 1 1 X
2 - 3
N
48.
y
o 1
b y=1-2
2
1 1 1 1 x
4 2 | i
50.
y
|
: 6 1
1 y=
| 47 x+2
|
ANEIE
1 | .
) 2 s
T 22k
|
e
.61
|
1
52.
y
1
1
y=—0-1
- -‘2
1 1 1 1 x
= 271 Z T
,5_
,10_

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



53.

=N W s L

55. (a) domain: [0,2]; range: [2, 3]

y

nl
m=f(x)+2
2

1+

0 1 2 3 4

(¢) domain: [0, 2]; range: [0, 2]

y

y=2f(x)

1 1

0 1 2 3

() domain: [—2,0]; range: [0, 1]

y=fx+2)

-2 -1 0

(g) domain: [—2,0]; range: [0, 1]

y

2+

y=fx)

-2 -1 0

X

X

UPLOADED BY AHMAD JUNDI
Section 1.2 Combining Functions; Shifting and Scaling Graphs 13

54.

o/\z *
-1
(d) domain: [0, 2]; range: [—1,0]

y

1+

—1F

(f) domain: [1,3]; range: [0, 1]

y
2_
y=fa-1)
1.—
/\ R
0 1 2 3

(h) domain: [—1,1]; range: [0, 1]

y=—fx+1)+1

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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56. (a) domain: [0,4]; range: [—3,0]

N

y=g(n

31

(¢) domain: [—4,0]; range: [0, 3]

y=gn+3

t

4

-2

(e) domain: [2,4]; range: [—3,0]

v

y=g(-t+2)
1 ] t

-3+

2 6

(g) domain: [1,5]; range: [—3,0]

Yy
L

y=g(1-t¢t)

57. y=23x>-3

59. y=1(1+3%)=1+L

6l. y=+4x+1

63. y=1/4—(3)* = V16 —x

65. y=1—(3x)®

=1-27x°

UPLOADED BY AHMAD JUNDI

(b) domain: [—4,0]; range: [0, 3]

y

-4 y=-g@) 0

(d) domain: [—4,0]; range: [1,4]

y

1 1 t
4 2

(f) domain: [—2,2]; range: [—3,0]

v

y=g(-2) |

-3

(h) domain: [0,4]; range: [0, 3]

y=-g(t-4)

58. y=(2x)? —1 =4x2 — 1

60. y=1+ o =1+3
62. y=3y/x+1
64. y = 34 —x
66. y:l—(§)3:1_x§“

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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67. Lety = —/2x + 1 = f(x) and let g(x) = x/2,

h(x) = (x+ 1) i) = vV2(x + )% and 1

jx) = 7[\/5()(+ %)1/2} = f(x). The graph of 1k

h(x) is the graph of g(x) shifted left % unit; the | }\ R R
graph of i(x) is the graph of h(x) stretched Ll

vertically by a factor of \/5; and the graph of -3 \
j(x) = f(x) is the graph of i(x) reflected across —ap T

the x-axis.

68. Lety = /T — % = f(x). Let g(x) = (—x)"/?,
h(x) = (=x + 2)"/% andi(x) = (=% + 2)1/2
= /1 — 3 = f(x). The graph of g(x) is the
graph of y = \/; reflected across the x-axis.
The graph of h(x) is the graph of g(x) shifted
right two units. And the graph of i(x) is the

graph of h(x) compressed vertically by a factor

of \/5

69. y = f(x) = x3. Shift f(x) one unit right followed by a
shift two units up to get g(x) = (x —1)° + 2.

70. y=(1—2z)° +2=—[(x = 1)* + (=2)] = f(x).

Let g(x) = x>, h(x) = (x — 1), i(x) = (x — 1)’ + (-2),

and j(x) = —[(x — 1)® + (—2)]. The graph of h(x) is the \; PRI
graph of g(x) shifted right one unit; the graph of i(x) is Lo TS
the graph of h(x) shifted down two units; and the graph R st CON

of f(x) is the graph of i(x) reflected across the x-axis. -10}-

71. Compress the graph of f(x) = % horizontally by a factor
of 2 to get g(x) = 5. Then shift g(x) vertically down 1

4
unit to get h(x) = - — 1. 3
2
1

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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72. Letf(x) = L and g(x) = 3 +1 = ﬁ +1
2
1 1 :
=-———=+1=——=-=+1. Since
(v2) [(1/v2)]
\/5 ~ 1.4, we see that the graph of f(x) stretched
horizontally by a factor of 1.4 and shifted up 1 unit

is the graph of g(x).
o 2
73. Reflect the graph of y = f(x) = \/x across the x-axis
y
to get = —/x.
o get g(x) V/x g
3L
2L
1L
P NEEERe
1R
2k y:—%/;
3k
4}

74,y = f(x) = (=2x)"° = [(~1)(2)x]*/3
= (=1)"3(2x)*® = (2x)*/3. So the graph

of f(x) is the graph of g(x) = x*/*compressed
horizontally by a factor of 2.
75. 76.
y
- 3
1k
77. 92+ 25y =225 = 5 4+ % =1 78. 16x* + 7y* = 112 = (;i)z +35 =1
7
y y
61 1632+ 7y2 =112

41 9x2 +25y% =225

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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2
79. 3x2+(y—2)2:3:>’1‘—2—|—(z\;_2));=1 80. (x+1)° 422 =a= D=Ly vy
3

2k
41 324 (y-2%=3 @+ D2 +2y2 =4

-2 -l 1 2
81 3(x—1)*+2(y+2)*=6 82. 6(x+2)"+9(y—1)* =54
) B 1] I O
(va) () 3 (V)
X y

—4F 3-12+2(+2)%=6

83. % + %2 = 1 has its center at (0, 0). Shiftinig 4 units

left and 3 units up gives the center at (h, k) = (—4, 3).
So the equation is x 7;;4)}2 + 0 ;3)2 =1 Grd? -3, 12:
= 0‘1—24)2 + (y;—>3)2 = 1. Center, C, is (—4, 3), and ’ : T
major axis, AB, is the segment from (-8, 3) to (0, 3). |
710 =8 =6 —4 2 Al 2

84. The ellipse "742 + % = 1 has center (h, k) = (0, 0).
Shifting the ellipse 3 units right and 2 units down

produces an ellipse with center at (h, k) = (3, —2) 2

2 1+
& ;3)2 + b 72(572” = 1. Center, s

and an equation
C,is (3, —2), and AB, the segment from (3, 3) to r
(3, —7) is the major axis. 3

85. (a) (fg)(—x) = f(—x)g(—x) = f(x)(—g(x)) = —(fg)(x), odd
® (5) 0 =355 =4 = (1) 09 0dd

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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(©)
(d)
(e)
()
(&
(h)
()

UPLOADED BY AHMAD JUNDI

Chapter 1 Functions

(F) (0 = §57 = 5" = — () (0. 0dd

£2(—x) = f(—x)f(—x) = f(x)f(x) = f2(x), even

g2(—x) = (g(—x))* = (—g(x))* = g*(x), even

(fo g)(—x) = f(g(—x)) = f(—g(x)) = f(g(x)) = (fo 2)(x), even

(g o H)(—x) = g(f(—x)) = g(f(x)) = (g o H)(x), even

(fo ) (—x) = f(f(—x)) = f(f(x)) = (f o f)(x), even

(g o g)(—x) = gg(—x)) = g(—g(x)) = —g(gx)) = —(g o g)(x), odd

86. Yes, f(x) = 0 is both even and odd since f(—x) = 0 = f(x) and f(—x) = 0 = —f(x).

87. (a) (b) y
1
X
0 1
d
(©) @
\
@)
f
(3)(X)
1 f(x) =vX
0 3
Z ! 7
(g~ f)(x) 9lx) =l =x
(f-9)(x) 0 N .
88. ;
1 (fo9)x)
10+
g(X)=x25_
(g H()
SR I AT I
E_ fx)=x-17

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI

Section 1.3 Trigonometric Functions 19

1.3 TRIGONOMETRIC FUNCTIONS
I. @ s=r9=(10)(¥) =8rm (b) s=10=(10)(110°) (135) = 4 = 3" m
2. §=2% =197 = 3 radians and 2 (1C) = 225°

3. 0=80° = 0 =280°(7gs) = & = s=(6) (%) = 8.4in. (since the diameter = 12 in. = radius = 6 in.)

4. d=1meter = r=50cm = 023:%:0.6rad0r0.6(¥)z34°

2w s 3 3T T s s 5T
5.0 G 5 | % 6. |0 ~3 -5 |~ | 1| @
. V3 1 . V3 1 1 1
Sll’le 0 -5 0 1 % sm0 1 5 -3 ﬁ 3
cosf | —1 311 0 —% cosf | 0 L g ﬁ _?
tan ¢ 0 V3 0 jund. | —1 tan® |und. | —\/3 | — ﬁ 1 | = %
1 _
cotf | und. 7 und. 0 1 cot 0 0 _ % _ \/§ _ \/5
sec | —1 —2 1 und. | —/2 secf | und. 5 % \/5 _ %
csc 6 | und. \% und 1 \/5 3
csc 6 1 ~7 -2 \/5 2
_ 4 _ 3 ) _ 1
7. COsSX =—3,tanx = — 3 8. smx—%,cosx—ﬁ
9. sinx:fé,tanx:f\/g 10. sinx:}%,tanx:f%
x — — L __ 2 —_ 3 — L
11. sinx = \/g,cosx— 7 12. cosx = 5 ,tanx—\/5
13. 14.

—-1+

period =7 period = 47

y ’ Y

1 ¥y =cos Tx

0 \77\ . .

1 1 x I}‘ Iv-—’/\'%\,
/ 0 1 2
T\

period = 2 period = 4

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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17.
y
y=-sin X
1 /\
0 3 o~
R N
period = 6
19.
y
i \/2” |
2
_1_
period = 27
21.

1 Il
_ﬂ0| © 3
4 4

&R

period = 27

23. period = 7, symmetric about the origin

s

2
s=cot2t

1F

[STEY

25. period = 4, symmetric about the s-axis

UPLOADED BY AHMAD JUNDI

18.
period = 1
20.
4
S S
period = 27
2.
1_\2 5
0 < L L X
T 2
1
2+
3k
y:cos[,x+2Tj—2
period = 27

24. period = 1, symmetric about the origin

26. period = 47, symmetric about the origin

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



27.

28.

29.

31.

32.

33.

34.

35.

36.

37.

UPLOADED BY AHMAD JUNDI

Section 1.3 Trigonometric Functions

(a) Cos x and sec x are positive for x in the interval y=cosx y y/=sec 2
(=%, %) and cos x and sec x are negative for x in the
intervals (—37”, —g) and (%, %”) Sec x is undefined B 2 i
when cos x is 0. The range of sec x is S . s p ) 2nx
(—o0, —1]U[1, o0); the range of cos x is [—1, 1]. ﬂ 2 m

(b) Sin x and csc x are positive for x in the intervals
(—3—" —7r) and (0, 7); and sin x and csc x are negative

for x in the intervals (—m, 0) and (, 3F). Csc x is

undefined when sin x is 0. The range of csc x is
(=00, —1]U[1, 00); the range of sin x is [—1, 1].

Since cot x = ﬁ , cot x is undefined when tan x = 0

and is zero when tan x is undefined. As tan x approaches
zero through positive values, cot x approaches infinity.
Also, cot x approaches negative infinity as tan x
approaches zero through negative values.

y=cotx

D: —co<x<oo;Riy=-1,0,1 30. D: —0o<x<oo;Riy=-1,0,1
y
A y:rsinx.l y=sinx
y=|sinx] y=sinx
—271'_.(7! 1-4~ n 2
. BaeS
ol-—_h;> oaats * y=[sinx]

cos (x — E) = COS X COS (f

3 ) — sin X sin (f g) = (cos x)(0) — (sin x)(—1) = sin x

g
cos (x + 5) = cos x cos (5) — sinx sin () = (cos x)(0) — (sin x)(1) = —sin x
sin (x + 7) = sin x cos (5) 4 cos x sin (F) = (sin x)(0) + (cos x)(1) = cos x

sin (x — 7) = sinx cos (— ) + cos x sin (— 5) = (sin x)(0) + (cos x)(—1) = —cos x

cos (A —B) = cos (A + (—B)) = cos A cos (—B) — sin A sin (—B) = cos A cos B — sin A (—sin B)
= cos A cos B + sin A sin B

sin(A — B) = sin(A + (—B)) = sin A cos (—B) + cos A sin (—B) = sin A cos B + cos A (—sin B)
=sin Acos B —cos AsinB

IfB=A,A—B =0 = cos(A—B)=cos0=1. Alsocos(A —B) =cos(A — A) =cos A cos A+ sin A sin A
= cos? A + sin2 A. Therefore, cos? A + sin? A = 1.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

49.

51.

52.

53.

54.

55.

56.

57.

UPLOADED BY AHMAD JUNDI
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If B = 2, then cos (A + 27) = cos A cos 2w — sin A sin 271 = (cos A)(1) — (sin A)(0) = cos A and
sin (A 4 27) = sin A cos 27 + cos A sin 27 = (sin A)(1) + (cos A)(0) = sin A. The result agrees with the
fact that the cosine and sine functions have period 2.

cos (m + x) = cos w cos x — sin 7 sin X = (—1)(cos x) — (0)(sin X) = —cos X
sin (27 — X) = sin 27 cos (—x) + cos (27) sin (—x) = (0)(cos (—x)) + (1)(sin (—x)) = —sin x

sin (% — x) = sin (%ﬂ) cos (—x) + cos (7”) sin (—x) = (—1)(cos x) + (0)(sin (—x)) = —cos x

3r

cos (3 4 x) = cos (3£) cos x — sin (3) sin x = (0)(cos x) — (—1)(sin x) = sin x

sin 72 =sin (5 + %) =sin 7 cos § +cos % sin § = (@) (3) + (4) (4) = \/61\/5

cos 2 = cos (Z + &) = cos § cos Z —sin I sin T = (VTE) (-4 - (\/TE (\/75) :_M

cos f5 =cos (5= §) =eos Feos (= §) —sin g sin (- §) = () (+F) - (%) (- %) = 5F

sin 35 = sin (% = ) = sin (%) cos (= §) +eos (¥) sin (- §) = (F) (F) + (-9 (- 8) = 55
cos? 5 = Lres(E) _ 1+ 2ays 43, cot 35— Lreost) _ 15(F) _ pova

gin? & Lzes(l) _ 1= 2-va s0. sin? 3 — () 12(8) _2evi
sin?f = 2 = sinf = :E\/_ée_g’%"%ﬂ,%r

sin?f = cos? = Y — € an2) = | = tanf= £ 1=9=1, 3 7 I

sin20 — cos) = 0 = 2sinf cos @ — cosf = 0 = cosH(2sinf — 1) =0 = cos§ =0 or 2sinf — 1 =0=-cosf =0 or

: 1 _r 3m _m 5w _m © 51 3w
51n9—2:>0—2,2,0r9—6,6 éa_é’z’e’z

0826 + cos ) = 0 = 2c0s?0 — 1 + cos = 0 = 2c0s?0 + cos — 1 =0 = (cosf + 1)(2cos — 1) =0

=cosf+1=00r2c0s0—1=0=cosf=—1lorcosf=L=0=mgor =22 =0=2 7 =
2 3> 3 3 3
tan (A + B) — sin (A+B) — sin A cos B+cos A cos B — f‘o'l’,if‘éi 3 f;’ffiff,'l 5 __ _tan A+tan B
cos (A+B) cos A cos B—sin A sin B cosAcosB__ sin Asin B I—tan A tan B
cos A cos cos A cos
tan(A — B) = sin(A—B) __ sin AcosB—cosAcosB __ S Acos —fﬁf,’ifi,‘i ; _ tanA—tanB
cos (A—B) cos A cos B+sin A sin B cos 2 CosBysin ﬁ _ I+tan A tan B

According to the figure in the text, we have the following: By the law of cosines, ¢? = a? + b? — 2ab cos 6
=12+4+1%2 —-2cos(A —B) =2 —2cos(A — B). By distance formula, c> = (cos A — cos B)? + (sin A — sin B)?
= cos?’ A — 2 cos A cos B + cos? B + sin? A — 2 sin A sin B + sin? B = 2 — 2(cos A cos B + sin A sin B). Thus

c?2=2—2cos(A—B)=2—2(cos A cos B+sin AsinB) = cos(A — B) = cos A cos B + sin A sin B.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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(a) cos(A—B)=cosAcosB +sinAsinB
sin § = cos(5 — 6) and cos 6 = sin(5 — 0)
Letd =A+B
sin(A + B) = cos[% - (A—i—B)] = cos[(g —A) —B} =cos (3 —A) cosB +sin (7 — A) sinB
= sin A cos B 4 cos A sin B
(b) cos(A —B) =cos AcosB +sin A sin B
cos(A — (=B)) = cos A cos (—B) + sin A sin (—B)
= cos(A + B) = cos A cos (—B) +sin A sin (—B) = cos A cos B + sin A (—sin B)
=cos AcosB —sin Asin B
Because the cosine function is even and the sine functions is odd.

¢ =a’ +b? — 2ab cos C = 2% 4 3% — 2(2)(3) cos (60°) = 4 4+ 9 — 12 cos (60°) = 13 — 12 (
Thus, ¢ = ﬁ ~ 2.65.

)=1.

1
2

c? = a2 +b% —2abcos C =22 432 — 2(2)(3) cos (40°) = 13 — 12 cos (40°). Thus, ¢ = /13 — 12 cos 40° ~ 1.951.

From the figures in the text, we see that sin B = }C—‘ If C is an acute angle, then sin C = %. On the other hand,
if C is obtuse (as in the figure on the right), then sin C = sin(7 — C) = %. Thus, in either case,
h=D>bsinC =csinB = ah = absin C = ac sin B.

. 2,12 .2 2, .2 12 .
By the law of cosines, cos C = % and cos B = %. Moreover, since the sum of the

interior angles of a triangle is 7w, we have sin A = sin (7 — (B + C)) = sin(B 4+ C) = sin B cos C + cos B sin C

= () [a“z'fb‘cz} + |:az+2(:jc—b2:| (1) = (52 ) (222 +b> —c* + ¢ —b?) = & = ah =bcsinA.

Combining our results we have ah = ab sin C, ah = ac sin B, and ah = bc sin A. Dividing by abc gives

h _ sinA _ sinC __ sinB

bce — a c b

law of sines

By the law of sines, S04 = ¥ = @ By Exercise 61 we know that ¢ = ﬁ Thus sin B = i? ~ 0.982.

2 2\/— =
From the figure at the right and the law of cosines, ¢
b> =a? +22 —2(2a) cos B
—atd—da(l)=a?—2a+4
; : . inA _ sinB e b
Applying the law of sines to the figure, *2= =
= @ = @ = b= \/ga. Thus, combining results, - b
T,
a?—2at+4=b"=3a> = 0=1a+2a—4 B 5 A

= 0 = a? +4a — 8. From the quadratic formula and the fact that a > 0, we have
—4 /A (8) _ 4/3-4 1.464
2 = T3z — L0

a—=

(a) The graphs of y = sin x and y = X nearly coincide when x is near the origin (when the calculator
is in radians mode).

(b) In degree mode, when x is near zero degrees the sine of x is much closer to zero than x itself. The
curves look like intersecting straight lines near the origin when the calculator is in degree mode.
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24 Chapter 1 Functions

65. A=2,B=27n,C=—m,D=—1

67. A=—2,B=4,C=0,D=1

T s E)

68. A=32,B=L,C=0,D=0

69-72. Example CAS commands:
Maple
f :=x > A*sin((2*Pi/B)*(x-C))+D1;
A:=3; C:=0; D1:=0;
f_list := [seq( f(x), B=[1,3,2*Pi,5*Pi] )];
plot( f_list, x=-4*Pi..4*P1, scaling=constrained,
color=[red,blue,green,cyan], linestyle=[1,3,4,7],
legend=["B=1","B=3","B=2*Pi","B=3*Pi"],
title="#69 (Section 1.3)");
Mathematica

Clear[a, b, c, d, f, x]
flx_]:=a Sin[27/b (x —¢)] +d
Plot[f[x]/.{a — 3,b — 1,¢c — 0,d — 0}, {x, —4m, 47 }]

Copyright © 2010 Pearson Education, Inc
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69. (a) The graph stretches horizontally.

PN D /\j’\ “

B=3

''B=1

,' \ I N 3 ‘
! 0 st L v AP o[ TE=27p"
N 7 - \
! \/ MY W/ \/ B=3*Pi

(b) The period remains the same: period = | B |. The graph has a horizontal shift of % period.

I s
(b) The graph is shifted left C units.
(c) A shift of & one period will produce no apparent shift. | C | = 6

71. (a) The graph shifts upwards | D |units for D > 0
(b) The graph shifts down | D |units for D < 0.

72. (a) The graph stretches | A | units.

y
I, \ lr’\\‘ e ‘IA\‘ :”\\‘
\ Do P h
[ ;o N H
1 \ ' ' & H \
Lo [ 61, | ! A=9
AN A% AN AN !
TARY i\ i o !
/S R N A A
\ ] " Ju A h Y "
. b
y 4 h “'.‘ 2 i \ " "y i
f/\i || ;/\'i JA=1
T ‘ — — X
ToNTs N DT N
" ) n '1\ 2+ W y o '|'
1 n 1 i\l I K ! N ':
: [\ N g W R
| \ ' \
; N T A AV}
\ 1 '| ! ' [ ‘, ]
Voo . —6 [ Voo
[ ! Voot \ I \ !
Vol Vol L Vol
\‘ ,’ \\ 4’ - \\ ,l ‘\ ‘l
v v \vj Y

(b) For A < 0, the graph is inverted.
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1.4 GRAPHING WITH CALCULATORS AND COMPUTERS

1-4. The most appropriate viewing window displays the maxima, minima, intercepts, and end behavior of the graphs and
has little unused space.

fo)=x3—4x2—4x +16

15
\ i / 0}
5 5
x 10+
5-4-B-2-1¢| 1 2 3 4 5 \
1 1

1o 4 ) L1 1 1
f(x)=x*-7x"+6x T *
s (x)=x X X 543 |_5_ 1 2\%/& 5
-20 -10
-25
3. d 4. b
Y A
251 f(x)=5+12x-x’ sb f@=f5+ax—x2
20
15 L

10 B
5 1
x T R | X
-4 W 1 2 3 \4 5 -1 1 2 3 4 5
1k
-10

-15

5-30.  For any display there are many appropriate display widows. The graphs given as answers in Exercises 5—30
are not unique in appearance.

5. [-2, 5]by [—15, 40] 6. [—4, 4 by [—4, 4]

y 4 3 Y
=x"-4x’ +15 3 2
S =x"—4x fx) = _X3 - _'; —2x+1

=
T
..
T T
<_
IS
=

=
(=] (=]
/l
L
|
w
\:5
L

o
B =
T T T

7. [~2, 6] by [-250, 50] 8. [—1, 5]by [-5, 30]
Y fw=x5-5xt+10 A ..
fx) = 4x” —x

ol 30+

—_ | 1 1 x 20

1 3 4 6
10+
7T 2 s s

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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9. [~4,4]by [-5, 5] 10. [~2, 2] by [-2, 8]
y y
x)=xV\ —x2
Z: o 8 f)=226-x%)
3k or
21 4r
1 2r
S {oa 12345 0" B p— I PR
,2_
L
5L
11. [=2, 6]by [-5, 4] 12. [—4, 4] by [-8, 8]
y y

- W A

T T
\

|

.

LL

)

.

w

L"’\

N

=

13. [=1, 6] by [1, 4] 14.
y
10
8 y=5:25_ 2,
2 X
N
b
15. [=3, 3]by [0, 10] 16. [—1, 2] by [0, 1]
y y
10+ 1
9
8- y=lx?-xl
7k
6
i: y=|x2—1[
3 1 1
2+ 2 n 5 X
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17. [=5, 1]by [-5,5] 18. [=5, 1]by [-2, 4]

NEES
T T T T T
<
I
%%
+ [+
N
[ CERENN
T

T ﬁx L T 1 X
-10-8-6-4) ,[ 2 4 6 810 5 4 3/2 -l
41
61 =r
S+
19. [—4, 4] by [0, 3] 20. [-5, 5]by [~2, 2]
y y
30| 2 ==t

x2+2

251 ==—<
=22 \
2.0 |

K Ll
0.5
N IR
21. [-10, 10] by [6, 6] 22. [-5, 5] by [-2, 2]
y y

8 x—1 2r
6 f(x)=x2_x_6 / L \
4
2

L1 L ¥
- -5-4-3-2-1 12345
= 8
fx)=
\ P-9

L
o4
il
|
B
|
|
N
T T T T T T T T T T
S
[}
=
=
N\_\

4
| 6 B
18
23. [—6, 10] by [—6, 6] 24. [-3, 5]by [—2, 10]
y y
x2— 15x +
Jjﬁ li")=64x2i510x6 10
ol V
1 ~ | 1 x 6+
5 j 5 10 AL /<X)=‘f:23
-6 1 |/\/27-|\1 L1 ¥
77271_2_1\2345 ;
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25. [—0.03, 0.03] by [—1.25, 1.25] 26. [—0.1, 0.1] by [3, 3]

y y

y=3cos60x

ins k

y =sin 250x L

05 1+
1 1 1 1 -
L A 0.1 1 01 "
20.02 002] > ” -
_2 -
- _3 -

27. [~300, 300] by [—1.25, 1.25] 28. [—50, 50] by [~0.1, 0.1]

y y

_ X
y=cos {55

1 .. (x
1.0, o1k y=1—05m[m)
:\ I I 1 x
| | | | | | -50 5 25 50
x
-300 300
—0.5 1

-1.0-

29. [—0.25, 0.25] by [-0.3, 0.3] 30. [—0.15, 0.15] by [-0.02, 0.05]

y =x+-Lsi y
y=x+gg sin 30x

N T
o2L o004l y =2+ ggcos 100x
0.1 A /\0.02 /\ /\
1 1 1 1 x 1 (I /\ Il 1 X
02 -0.1 0.1 02 70.|541\y70.v\\s[ \0/05 \)/| 0.15
= 02
02}

3l X2+ 2x =444y -y = y=24++/—x2 - 2x +8. A G 1P (o229
2

The lower half is produced by graphing
y=2—+—x2—-2x+8. 1

32. y2 —16x> =1 =y = + /1 + 16x2. The upper branch y
is produced by graphing y = /1 + 16x2.

y=V1+ 16x%
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33. 34.

y f(x) =—tan 2x

4 10 f(x):3cot[%)+l
3+ sk
6_
2t 4+
2_

= 1 | L 1 "

35. 36.

f(x) =sin 2x + cos 3x

x

: I lg ﬂx):3cm[2)+l
6
: 4
1 1 1 2 1 ] 1
’ 6 4 Dol 2 2\6 *
1

37. 38.
y
41
,L .
2L S
1 .‘- 1
| 1 1 1 1 l..'T“"Y 04
——, 3 4 5 6
“1F "..
2k .. g
3k Y i3
4
39. 40. ,
y y
8l o |
R sF T
L3 6L y=x|x] Z:
5k ..'. T I B | % X
$ “4 2 LF 2 4
L ° “r
. Iok
L/
N IREETE R I a
—1+
2k
CHAPTER 1 PRACTICE EXERCISES
1. The areais A = 71’ and the circumference is C = 27r. Thus,r = & = A = Tr(QC—Tr)2 = f—;
2. The surface areais S = 4drr? =r = (%)1/ 2. The volume is V = %w P=r=4 i—;’ Substitution into the formula for
: _ 2 _ 3v\2/3
surface area gives S = 4rr? = 4 (3¥)7".
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3. The coordinates of a point on the parabola are (x, x?). The angle of inclination 6 joining this point to the origin satisfies

the equation tan 6 = % = x. Thus the point has coordinates (x, x?) = (tan 6, tanf).

_ rise __
4. tanf = - = uOO = 500 tan @ ft.
5 6.
Y Y
2 y — XI/S 2 y = X2/5
L // \/
x x
-3 -2 -1 1 2 3 -3 -2 -1 1 2 3
-2 -2
Symmetric about the origin. Symmetric about the y-axis.
7. 8
Y Y
4 1.5

-3 -1.5 -1 -0.5 0.5 1 1.5

-4 -0.5
Neither Symmetric about the y-axis.

10. y(—x) = (—x)° = (=x)* = (=x) = =x% + x® + x = —y(x). Odd.

I1. y(—x) =1 — cos(—x) = 1 — cos x = y(x). Even.

12. y(—x) = sec(—x) tan(—x) = CS;:Z(:?) = —Sinix — _gecxtanx = —y(x). Odd.

cos2x

—X 4 x4 x4
13- y(=x) = (_(,()32;(;() - —X3J~r#12x - 7x3—+21x = —y(x). Odd.

14. y(—x) = (—x) — sin(—x) = (—x) + sinx = —(x — sinx) = —y(x). Odd.
15. y(—x) = —x + cos(—x) = —x + cos x. Neither even nor odd.
16. y(—x) = (—=x)cos(—x) = —x cosx = —y(x). Odd.

17. Since f and g are odd = f(—x) = —f(x) and g(—x) = —g(x).
@ (f-2)(—x) = f(-x)2(~x) = [~(x)][~2(x)] = Fx)g(x) = (- g)(x) = f-gis even
() £(—x) = H(—X)F(—X)F(—X) = [~FR)][—F ][ ~F(x)] = —F(x) - (x) - £(x) = ~F3(x) = £* is odd.
(c) f(sin(—x)) = f(—sin(x)) = —f(sin(x)) = f(sin(x)) is odd.
(d) g(sec(—x)) = g(sec(x)) = g(sec(x)) is even.
@ lg(=x) = [—e(x)[ = [g(x)[ = [g| is even.
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18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
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Chapter 1 Functions

Let f(a — x) = f(a + x) and define g(x) = f(x + a). Then g(—x) = f((—x) + a) = f(a — x) = f(a+ x) = f(x + a) = g(x)
= g(x) = f(x + a) is even.

(a)
(b)

()
(b)

(a)
(b)

(a)
(b)

(a)
(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)
(b)

(a)
(b)

(2)
(b)
(©)
d

()
()

(a)
(b)

The function is defined for all values of x, so the domain is (—o0, o).

Since | x | attains all nonnegative values, the range is [—2, 00).

Since the square

root requires 1 —x 0, the domain is (—oo, 1].

Since y/1 — x attains all nonnegative values, the range is [—2, co).

Since the square

For values of x i

root requires 16 — x? 0, the domain is [—4, 4].
n the domain, 0 < 16 — x? < 16,0 0 < v/ 16 — x2 < 4. The range is [0, 4].

The function is defined for all values of x, so the domain is (—o0, 00).

Since 3%7* attains all positive values, the range is (1, co).

The function is defined for all values of x, so the domain is (—oo, 00).

Since 2e~* attains all positive values, the range is (—3, o).

The function is equivalent to y = tan 2x, so we require 2x # '%T for odd integers k. The domain is given by x # “4—” for

odd integers k.

Since the tangent function attains all values, the range is (—oco, 00).

The function is defined for all values of x, so the domain is (—o0, 00).
The sine function attains values from —1 to 1, so —2 < 2sin(3x + 7) < 2 and hence —3 < 2sin(3x + ) — 1 < 1. The

range is [—3, 1].

The function is defined for all values of x, so the domain is (—o0, o).

The function is equivalent to y = v/x2, which attains all nonnegative values. The range is [0, o).

The logarithm requires x — 3 > 0, so the domain is (3, c0).

The logarithm attains all real values, so the range is (—oo, 00).

The function is defined for all values of x, so the domain is (—o0, o).

The cube root attains all real values, so the range is (—oo, c0).

Increasing because volume increases as radius increases

Neither, since th

e greatest integer function is composed of horizontal (constant) line segments

Decreasing because as the height increases, the atmospheric pressure decreases.

Increasing because the kinetic (motion) energy increases as the particles velocity increases.

Increasing on [2, co) (b) Increasing on [—1, c0)
Increasing on (—oo, 00) (d) Increasing on [3, c0)
The function is defined for —4 < x < 4, so the domain is [—4, 4].

The function is equivalent to y = /| x|, —4 < x < 4, which attains values from 0 to 2 for x in the domain. The

range is [0, 2].
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(a) The function is defined for —2 < x < 2, so the domain is [—2, 2].
(b) The range is [—1, 1].

First piece: Line through (0, 1) and (1,0). m ==l ==l = 1= y=-—x+1=1-x

-0~ 1 —
Second piece: Line through (1, 1)and (2, 0). m=34 =" =-1=y=—(x—-1)+1=—-x+2=2—x
1—-x, 0<x<«1
f(X){Q—X, 1<x<?2
First piece: Line through (0, 0) and (2, 5). m = =0 = 3 =y = 3x
Second piece: Line through (2, 5)and (4, 0). m=9=3 = =3 =y=—-3(x—2)+5=—-3x+10=10— 2

f(x) =

3x, 0<x<2 . . .
(Note: x = 2 can be included on either piece.)

10—, 2<x<4

@ (fog)(—1) = flg(~1) = f(2A) =f(1) = L =1
() (2of)(2) = e(f(2) = ¢(3) = 77 = 5 or /3
(©) (fof)(x) = f(f(x)) = f(}) = 7z =% x #0

@ (202)(x) = 2(e(x)) = & ) = N

(a) (fog)(—1) =f(g(-1)) =f(v/—-1+1) =£0)=2-0=2
(2) =

(
®) ( f(g(2)) =g(2-2)=¢g(0)=v0+1=1
(c) (fof)(x) =1f(f(x)) =f(2—x)=2—-(2—x) =x
( (

(d)

(@) (fog)(x) =flg(x) =f(v/x+2) =2— (Vx+2) = —x.x -2
(2of)(x) = f(2(x)) = g2 —x%) = /@~ ) + 2= VI %2

(b) Domain of fog: [—2, c0). (c) Range of fog: (—o0, 2].
Domain of gof: [—2, 2]. Range of gof: [0, 2].
(@) (fog)(x) = f(g(x)) = f( 1 x) =/V1I-x=v1-x
(gof)(x) = f(g(x)) = g(V/x) = /1 - V/x

(b) Domain of fog: (—oo, 1]. (c) Range of fog: [0, co).
Domain of gof: [0, 1]. Range of gof: [0, 1].
y = f(x) y = (fof)(x)
y Y

L ) >x —! > X
-4 N1 Pz -4\-3 2
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40.

41.

43.

Chapter 1 Functions
.
3+
2+
V L .-
’1/ /1/ re x
e |
2+
3}
y
y=Ix|
y=x
X
y=x

The graph of fy(x) = f;(|x]) is the same as the
graph of f;(x) to the right of the y-axis. The
graph of f5(x) to the left of the y-axis is the
reflection of y = f;(x), x 0 across the y-axis.

y= 15

N~

Whenever g;(x) is positive, the graph of y = go(x)
= |g1(x)| is the same as the graph of y = g;(x).
When g (x) is negative, the graph of y = g»(X) is
the reflection of the graph of y = g;(x) across the
X-axis.

UPLOADED BY AHMAD JUNDI

42.

It does not change the graph.

44.

y=lx24a4 1

)v=x2+x

Whenever g;(x) is positive, the graph of y = go(x) = |g1(x)|
is the same as the graph of y = g;(x). When g;(x) is
negative, the graph of y = g»(x) is the reflection of the
graph of y = g;(x) across the x-axis.
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47.

49.

50.

51.

-2

y=4- x2

Whenever g;(x) is positive, the graph of

y = g2(x) = |g1(x)| is the same as the graph of
y = g1(x). When g;(x) is negative, the graph of
y = go(x) is the reflection of the graph of

y = g1(x) across the x-axis.

y
y=/IxT 1£
Tal

The graph of fy(x) = f;(|x]) is the same as the
graph of f;(x) to the right of the y-axis. The

y=/x

graph of f5(x) to the left of the y-axis is the

reflection of y = f;(x), x 0 across the y-axis.

(@ y=g(x—3)+3

(©) y=g(—x)

(e) y=5-¢g(x)

(a) Shift the graph of f right 5 units
(©

(d)

(e)

UPLOADED BY AHMAD JUNDI
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46.

The graph of fy(x) = f; (]x|) is the same as the
graph of f;(x) to the right of the y-axis. The
graph of f5(x) to the left of the y-axis is the

reflection of y = f;(x), x 0 across the y-axis.

48.

_v=sin|x|

I/ M
\
N /
N
/,’

y=sinx

The graph of fy(x) = f; (|x|) is the same as the
graph of f;(x) to the right of the y-axis. The
graph of f5(x) to the left of the y-axis is the

reflection of y = f;(x), x 0 across the y-axis.

(b) y=g(x+2%)-2
@ y=—gx)

®

y = g(5x)

(b) Horizontally compress the graph of f by a factor of 4

Horizontally compress the graph of f by a factor of 3 and a then reflect the graph about the y-axis
Horizontally compress the graph of f by a factor of 2 and then shift the graph left % unit.
Horizontally stretch the graph of f by a factor of 3 and then shift the graph down 4 units.

(f) Vertically stretch the graph of f by a factor of 3, then reflect the graph about the x-axis, and finally shift the

graph up % unit.

Reflection of the grpah of y = \/g about the x-axis
followed by a horizontal compression by a factor of
3 then a shift left 2 units.
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52. Reflect the graph of y = x about the x-axis, followed
by a vertical compression of the graph by a factor
of 3, then shift the graph up 1 unit.

53. Vertical compression of the graph of y = é by a
factor of 2, then shift the graph up 1 unit.

54. Reflect the graph of y = x'/3 about the y-axis, then
compress the graph horizontally by a factor of 5.

55.

y

y=cos 2x

\WAWA

- x
n 4 3 2r
2 2

57.

X
1\/2
_1 -

period = 2

UPLOADED BY AHMAD JUNDI

-4, =3 = =
y
T y=x2
1 1 1 1 1 1 X
3 2 -1 1 2 3
-1
5 y=(30'"
56.
y
A x
=27 2
y:sin)z—f
period = 47
58.

period = 4
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62.

63.

64.

65.

66.

67.

60.

y

2rF y=2cos(x—§)

1

/ 1 1 /X

z T 5n 4n 1z

6 3 6 3 6

*1_

_2_
period = 27

(@ sinB=sinZ=2=2% = b=2sinZ=2 (—3) = /3. By the theorem of Pythagoras,

V() -er=yi=3

2

a24b2=c? = a=c2-b2=4-3=1.

b 2 2 2

2

Do o b B B o B B
(b) SlnB*SngfEfE:>C—Smg—(ﬁ)—%.’rhus,a—\/c?—bZ—

(@) sinA=% = a=csinA (b)
(@ tanB=2 = a= b (b)
(a) sinA =2 (©)

Let h = height of vertical pole, and let b and c denote the
distances of points B and C from the base of the pole,
measured along the flatground, respectively. Then,

tan 50° = 1, tan 35° = I, and b — ¢ = 10.

Thus, h = ¢ tan 50° and h = b tan 35° = (c + 10) tan 35°
= ctan 50° = (¢ + 10) tan 35°

= ¢ (tan 50° — tan 35°) = 10 tan 35°

= ¢= 3’ — h = ctan50°

tan 50°—tan 35
__ 10 tan 35° tan 50° 16.98 m

= Tans50°—tan35°

Let h = height of balloon above ground. From the figure at
the right, tan 40° = %, tan 70° = %, and a + b = 2. Thus,
h=btan 70° = h = (2 —a)tan 70° and h = a tan 40°

= (2 —a)tan 70° = atan 40° =- a(tan 40° + tan 70°)
=2tan70° = a= 270 — h — 3 tan 40°

tan 40°+tan 70°
__ 2tan 70° tan 40°
T tan 40°+tan 70° 1.3 km.
(a) ,

™ AN X
A B N

y=sinx+cos%

(b) The period appears to be 4.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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4 4

-2

period = 27

. T
y=1 +sm[x+—
- 4

=

tanA={ = a=btan A
. _a o
smA—C = Cc=g5a

. _a _ b
s1nA_c_ .

N35° ¢/ s0°

B
10 ._,“._. —_—
F—. N c

balloon

X
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(¢) f(x + 4m) = sin(x + 4m) + cos (%) = sin (x + 27) + cos (% + 27r) = sin X + cos 3
since the period of sine and cosine is 27r. Thus, f(x) has period 4.

68. (a)

(b) D= (-00,0)U(0,00); R=[-1,1]
(¢) fisnot periodic. For suppose f has period p. Then f (3= + kp) = f (5= ) = sin 27 = 0 for all

integers k. Choose k so large that 2%( +kp > % = 0< < 7. But then

_ 1
(172m)+kp

f (5 +kp) = sin (m) > 0 which is a contradiction. Thus f has no period, as claimed.

CHAPTER 1 ADDITIONAL AND ADVANCED EXERCISES

1. There are (infinitely) many such function pairs. For example, f(x) = 3x and g(x) = 4x satisfy
f(g(x)) = f(4x) = 3(4x) = 12x = 4(3x) = g(3x) = g(f(x)).

2. Yes, there are many such function pairs. For example, if g(x) = (2x 4 3)3 and f(x) = x!/3, then

(fo g)(x) = f(g(x)) = £ ((2x +3)%) = (2x + 3)*)"* = 2x + 3.
3. Iffis odd and defined at x, then f(—x) = —f(x). Thus g(—x) = f(—x) — 2 = —f(x) — 2 whereas
—g(x) = —(f(x) — 2) = —f(x) + 2. Then g cannot be odd because g(—x) = —g(x) = —f(x) -2 =—f(x)+2
= 4 = 0, which is a contradiction. Also, g(x) is not even unless f(x) = 0 for all x. On the other hand, if f is
even, then g(x) = f(x) — 2 is also even: g(—x) = f(—x) — 2 = f(x) — 2 = g(x).

4. If gis odd and g(0) is defined, then g(0) = g(—0) = —g(0). Therefore, 2g(0) =0 = g(0) =0.

5. For (x,y) in the 1st quadrant, |x| + |y| = 1+ x
& x+y=1+x & y=1. For(x,y) in the 2nd
quadrant, x| + |y| =x+1 & —x+y=x+1
< y =2x+ 1. In the 3rd quadrant, |x| + |y| =x + 1
& —x—y=x+1 & y=—-2x—1. Inthe 4th
quadrant, x| +|y| =x+1 < x+(-y)=x+1
& y = —1. The graph is given at the right.

|x|+|y|=1+x

H/“'”\H!
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We use reasoning similar to Exercise 5.
(1) 1stquadrant: y + |y| = x + [X|
S 2y=2X & y=xX. L
(2) 2nd quadrant: y + |y| = x + [X| s
S 2y=x+(—x)=0 & y=0.
(3) 3rd quadrant: y + |y| = x + |x] e 1
S y+(=y)=x+(—x) & 0=0 b
= all points in the 3rd quadrant B

v+ lyl=x+ |x]

satisfy the equation.

(4) 4th quadrant: y + |y| = x + |x]
& y+(—y) =2x & 0 =x. Combining
these results we have the graph given at the

right:
(@) sin®x+cos’x =1 = sin?x=1—cos’x = (I —cos x)(1 +cosx) = (1 —cosx) = %ﬁs"x
l—cosx __ _sinx
= sinx ~ I+cosx
(b) Using the definition of the tangent function and the double angle formulas, we have
1—cos (2 (3
tan? (%) — Sinz(i) — M _ l—cosx

cos? (3) ~ 1eos(2(3)) T Idcosx
e g))

The angles labeled «y in the accompanying figure are
equal since both angles subtend arc CD. Similarly, the
two angles labeled « are equal since they both subtend
arc AB. Thus, triangles AED and BEC are similar which
implies 25 = 2cal=b

= (a—c)a+c)=b(2acosd —b)

= a’? —c?=2abcos § — b’

= ¢? =a’+b? — 2abcos 6.

As in the proof of the law of sines of Section 1.3, Exercise 61, ah = bc sin A = ab sin C = ac sin B
= the area of ABC = § (base)(height) = { ah = { bc sin A = § ab sin C = j ac sin B.

As in Section 1.3, Exercise 61, (Area of ABC)? = % (base)?(height)? = % a’h? = % a?b? sin? C
= 1a%b? (1 — cos®C). By the law of cosines, ¢* = a? + b> — 2ab cos C = cos C = % .

2 bt — )2 22b? a2 4 b2 — c2)2
Thus, (area of ABC)? = § a?b? (1 — cos? C) =  a?b? (1 - (%) ) = 2 (1 - %)

= (4227 — (a2 + 17 — )7 = & [(2ab + (a2 + b — %)) (2ab — (a* + b* — c2))]
= 1z [((@+1)? —c?) (¢ — (a—b)?)] = 1z [(a+b) + c)((a+ b) — c)(c + (a — b))(c — (a — b))]
— [(25) (252) (55 (=285 = s ks s - wheres = 2

Therefore, the area of ABC equals \/ s(s —a)(s—b)(s—c¢).

If f is even and odd, then f(—x) = —f(x) and f(—x) = f(x) = f(x) = —f(x) for all x in the domain of f.
Thus 2f(x) = 0 = f(x) =0.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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12. (a) Assuggested, let E(x) = W0 o B(x) = 100 - WII0 — Bx) = Eisan
even function. Define O(x) = f(x) — E(x) = f(x) — & +2f(_x) = _2f(_x) . Then

O(—x) = f(_x)_g(_(_x)) = f(_");f(x) =— (f(x) _2“_")> = —0(x) = Ois an odd function

= f(x) = E(X) + O(x) is the sum of an even and an odd function.

(b) Part (a) shows that f(x) = E(x) + O(x) is the sum of an even and an odd function. If also

f(x) = E1(x) + O1(x), where E; is even and O is odd, then f(x) — f(x) = 0 = (E;(x) + O1(x))

— (E(x) + O(x)). Thus, E(x) — E1(x) = O1(x) — O(x) for all x in the domain of f (which is the same as the
domain of E — E; and O — O;). Now (E — E{)(—x) = E(—x) — E1(—x) = E(x) — E1(x) (since E and E; are
even) = (E — E;{)(x) = E — E; iseven. Likewise, (O; — O)(—x) = O1(—x) — O(—x) = —0;(x) — (—0O(x))
(since O and O; are odd) = —(0;(x) — O(x)) = —(0O; — O)(x) = O; — Ois odd. Therefore, E — E; and
0; — O are both even and odd so they must be zero at each x in the domain of f by Exercise 11. That is,

E; = E and O; = O, so the decomposition of f found in part (a) is unique.

13. y:ax2+bx+c:a(x2+gx+ %) — %Jrc:a(er 2%)27 %+c

(a) Ifa > 0 the graph is a parabola that opens upward. Increasing a causes a vertical stretching and a shift
of the vertex toward the y-axis and upward. If a < 0 the graph is a parabola that opens downward.
Decreasing a causes a vertical stretching and a shift of the vertex toward the y-axis and downward.

(b) Ifa > 0 the graph is a parabola that opens upward. If also b > 0, then increasing b causes a shift of the
graph downward to the left; if b < 0, then decreasing b causes a shift of the graph downward and to the
right.

If a < O the graph is a parabola that opens downward. If b > 0, increasing b shifts the graph upward
to the right. If b < 0, decreasing b shifts the graph upward to the left.

(c) Changing c (for fixed a and b) by Ac shifts the graph upward Ac units if Ac > 0, and downward —Ac
units if Ac < 0.

14. (a) If a > 0, the graph rises to the right of the vertical line x = —b and falls to the left. If a < 0, the graph
falls to the right of the line x = —b and rises to the left. If a = 0, the graph reduces to the horizontal
line y = c. As |a| increases, the slope at any given point x = X, increases in magnitude and the graph
becomes steeper. As |a| decreases, the slope at x( decreases in magnitude and the graph rises or falls
more gradually.

(b) Increasing b shifts the graph to the left; decreasing b shifts it to the right.
(c) Increasing c shifts the graph upward; decreasing c shifts it downward.

15. Each of the triangles pictured has the same base Y

b = vAt = v(1 sec). Moreover, the height of each

triangle is the same value h. Thus ; (base)(height) = £ bh
= A} = Ay = A = ... . Inconclusion, the object sweeps
out equal areas in each one second interval.

Kilometers

Kilomcters

16. (a) Using the midpoint formula, the coordinates of P are (22, 220) = (2 ). Thus the slope

2 02
OP = &y _b2 _b
of OP =3I =25 = 3.
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(b) The slope of AB = 2=% = — % The line segments AB and OP are perpendicular when the product

0—a a

of their slopes is —1 = (9) (f b) = g . Thus, b> = a> = a = b (since both are positive). Therefore, AB

a a

is perpendicular to OP when a = b.

From the figure we see that 0 < 6 < 7 and AB = AD = 1. From trigonometry we have the following: sin§ = EB

E
AB
_ AE _ _ CD _ __ EB __ sinf .
cosf = a5 = AE, tanf = +p = CD, and tanf = AE = sosg- We can see that:

area AAEB < area sector DB < area AADC = 1(AE)(EB) < %(AD)zﬂ < 3(AD)(CD)

= Lsinfcosd < 1(1)°0 < 1(1)(tan6) = Lsinfcosh < 1 < Lsinf

(fog)(x) = f(g(x)) = a(cx +d) + b = acx 4+ ad + b and (gof)(x) = g(f(x)) =c(ax+b) +d =acx+cb+d
Thus (fog)(x) = (gof)(x) = acx + ad + b = acx + bc + d = ad 4+ b = bc + d. Note that f(d) = ad + b and
g(b) = c¢b + d, thus (fog)(x) = (gof)(x) if f(d) = g(b).

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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NOTES:
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CHAPTER 2 LIMITS AND CONTINUITY

2.1 RATES OF CHANGE AND TANGENTS TO CURVES

f(3) — f2 - f(1) = f(—1 -
1. (a) %: (;72():2819:19 (b) %: (1)7(7(1)):220:1
Ag _ g)—g=D) _ 1-1 _ Ag _ g0)—g(=2) _ 0-4 _
2. (a)ﬂ_ﬁ_T_O (b)E—W—T——Z
W) -h(d) _ —1- h(5)-h(§) _ 0-v3 _ -3./3
3. (a) %: (4%_44) _ 1% 1 :7% (b) %: (2%_%(6) — j%\[: 7:[
Ag _ gm—-g0® _ 2-D-2+D _ 2 Ag _ gm—g-=m _ 2-DH-2-1) _
4. (a) At T wx-0 T—0 - T (b) R G 2 =0
5 AR _ RQ-RO) _ V8rI-V1_3-1 _ 4
A T T 2-0 2 =2 =
AP _ PQ-P() _ 8—16+10)—(1—4+5) _ _
6. XM= 21 = T =2-2=0
2_3)—(22-3 3 2 .
7. (@) Ry = (@I =3 drdniliodol bl 44 b Ash— 0,4+ h — 4 = at P(2, 1) the slope is 4.

A
b)) y—1=4x—-2)=y—-1=4x-8=y=4x—-7

2 2
8. (a) &Y= CoUEW)ZBol) _solodhoiod _ ol 5 h Ash— 0,2 —h— —2 = at P(1, 4) the

slope is —2.
b) y—4=(2)x—1)=y—4=-2x+2=y=-2x+6

9. (a) % _ ((2+h)2—2(2+h);3)—(22—2(2)—3) _ 4+4h+h2_4h—2h—3—(—3) _ zhﬁ-hz =2+h Ash—0,24+h—2=at
P(2, —3) the slope is 2.
b)) y—(-3)=2x—-2)=y+3=2x—4=y=2x—1.
10. (a) % _ ((l+h)‘—4(1+}111))—(12_4(l)) _ l+2h+h2_h4_4h—(—3) _ h2£2h h_2.Ash o 0h-2 2= a

P(1, —3) the slope is —2.
b y—(-3)=(2)x=-1)=y+3=-2x+2=y=-2x—1.

11. (a) % — (2+h})13—23 — 8+12h+4}t1h2+h378 — 12h+4}¥1h2+h3 —_ 12—|—4h—|—h2ASh—>O, 12+4h—|—h2 N 12’ = at
P(2, 8) the slope is 12.

b) y—8=12(x—-2)=>y—-8=12x—-24=y=12x — 16.

3 2
12, (a) fY =2200W —0o0) _ ooioshoswoniol _ 3ok o 33 b2 Ash— 0, -3 —3h—h? — -3, = at
P(1, 1) the slope is —3.

b)) y—1=(3)x—-1)=y—-1=-3x+3=y=-3x+4.

3 3_ 3
13. (a) % _ (L+h) —12(1+hh)_(1* 12(1)) _ 1+3h+3h2+h‘;12—12h7(711) _ 79h+t3lhz+h3 94 3h+h Ash— 0.

—9+3h+h?>— — 9= atP(1, —11) the slope is —9.
®) y—(—11)=(-9)x-1)=y+1l=-9x+9=y=-9x—2.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



44

14.

15.

16.

17.

18.

19.

(a)

(b)

(a)

(b)

()

(b)

(a)

(b)
(©

()

(b)

(a)

(b)

(©
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A (2+h)>—3(2+h)?+4— (23 -3(2)° +4 2 B3 _12— 12h—3h2+4— 24 p3
A - ( ) _ 8+12h46h’+h 2o 12h-3h'ed=0 _ AN 3p 4 p2 Agh — 0,
3h +h? — 0 = at P(2, 0) the slope is 0.

y—0=0x—-2)=y=0.

Q Slope of PQ = 2P
Q1(10,225) 650225 — 42.5 m/sec
Q,(14,375) 858=37 = 45.83 m/sec
Q;(16.5,475) 650475 — 50.00 m/sec
Q4(18,550) 650-3%0 — 50.00 m/sec

Att = 20, the sportscar was traveling approximately 50 m/sec or 180 km/h.

Q Slope of PQ = 22
Q1(5,20) $-2 — 12 m/sec
Q:(7,39) 80-3 — 13.7 m/sec
Q3(8.5,58)  H=38 — 147 m/sec
Q4(9.5,72) $9-9% = 16 m/sec

Approximately 16 m/sec

§ 200
% 100
£

0 1 1 1 x

2000 01 02 03 04

Year

Ap _ _174-62  _ 112 _
Af = 5001200 = 3= = 06 thousand dollars per year
The average rate of change from 2001 to 2002 is% = % = 35 thousand dollars per year.
The average rate of change from 2002 to 2003 is% = % = 49 thousand dollars per year.

So, the rate at which profits were changing in 2002 is approximatley %(35 + 49) = 42 thousand dollars per year.

F(x) = (x +2)/(x — 2)

X | 1.2 1.1 1.01 1.001 1.0001 1
F(x) | —4.0 —34 —3.04 —3.004 —3.0004 -3
AF _ —40-(=3) __ . AF _ —34-(=3) _ 1.

Ax T T 12-1 —=5.0; Ax — T 11-1 —4.4;

AF _ —304—(=3) _ 7. AF _ —3.004—(=3) _ N4
Ax — 101—-1 —4.04; Ax — 1001—-1 —4.004;
AF __ —3.0004 —(=3) __ AN0A4-

Ax — T 10001—1 —4.0004;

The rate of change of F(x) at x = 1 is —4.

Ag _ g@-g) _ V2-1 Ag _ g5 —g) _ J/I5-1

R = e0-el) - V2ol 5 0414213 o= D = Vo &~ 0.449489

Ag _ gl+h)—gd) _ 1+h-1

Ax —  (I+h-1 — h

g(x) = \/x

1+h 1.1 1.01 1.001 1.0001 1.00001 1.000001
V1+h 1.04880 1.004987  1.0004998 1.0000499 1.000005  1.0000005
(\/1 +h-— 1) /h | 0.4880 0.4987 0.4998 0.499 0.5 0.5

The rate of change of g(x) at x = 1is 0.5.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI

Section 2.1 Rates of Change and Tangents to Curves

(d) The calculator gives lim Hhh*l = %
—
. 3) — f2 i3 %
20 @ D) B =t =g
’ ED-fQ) _ T-5 _ f—3 _ 2-T _ _2-T _
ii) (T—2 =15 = T7% *2T2(T—T2)* —2%(2IT)*_%’T762
b) T 2.1 2.01 2.001 2.0001 2.00001 2.000001
f(T) 0.476190  0.497512  0.499750  0.4999750 0.499997  0.499999
(f(T) — £(2))/(T —2) | —0.2381 —0.2488 —0.2500 —0.2500 —0.2500 —0.2500

(c) The table indicates the rate of change is —0.25 att = 2.
d) Jim (=5) = -3

NOTE: Answers will vary in Exercises 21 and 22.

21. (a) [0, 1]: & = B=0 = 15mph; [1,2.5]: & = 2= = W mph; [2.5,3.5]: & = 22=20 — 10 mph

25-1 At T 35-25
(b) At P(%, 7.5): Since the portion of the graph from t = 0 to t = 1 is nearly linear, the instantaneous rate of change

will be almost the same as the average rate of change, thus the instantaneous speed at t = % is 2=75 — 15 mi/hr.

1-0.5

45

At P(2, 20): Since the portion of the graph from t = 2 to t = 2.5 is nearly linear, the instantaneous rate of change will

be nearly the same as the average rate of change, thus v = 22=2% — 0 mi/hr. For values of t less than 2, we have

25-2

Q Slope of PQ = &¢
Qi(1,15) 13-20 — 5 mi/hr
Q(1.5,19) P2 = 2 mi/hr
Q3(1.9,19.9) 23=3% = 1 mi/hr
Thus, it appears that the instantaneous speed at t = 2 is O mi/hr.

AtP(3,22):

Q Slope of PQ = &¢ Q Slope of PQ = &¢
Qi1(4,35) 322 — 13 mi/hr Q1(2,20) 20-22 — 2 mi/hr
Q:2(3.5,30) P2 — 16 mi/hr Q:2(2.5,20) L2 = 4 mi/hr
Qs3(3.1,23) 2=2 = 10 mi/hr Q3(2.9,21.6) ZE=2 — 4 mi/hr
Thus, it appears that the instantaneous speed at t = 3 is about 7 mi/hr.

(c) It appears that the curve is increasing the fastest at t = 3.5. Thus for P(3.5, 30)

Q Slope of PQ = &¢ Q Slope of PQ = &¢
Qi1(4,35) 33-30 — 10 mi/hr Qi(3,22) 230 — 16 mi/hr
Q2(3.75,34) 25— = 16 mi/hr Q2(3.25,25) 55— = 20 mi/hr
Qs(3.6,32) 22=30 = 20 mi/hr Qs(3.4,28) =30 = 20 mi/hr

Thus, it appears that the instantaneous speed at t = 3.5 is about 20 mi/hr.

22. () [0,3]: 54 =10=b~ 1,678, (0,5]: 8 = 30=15 ~ 02 &,(7 10]: 42 = 0=1d & o5 &

3-0 day’ 5-0 day’ 10-7 7 day

(b) AtP(1, 14):

Q Slope of PQ = 42 Q Slope of PQ = 42
Qi(2,122) 122-18 — 1.8 gal/day Q1(0,15) 3=14 — _1 gal/day
Q4(1.5,13.2) B2-14 — _1.6 gal/day Q4(0.3, 14.6) Be-13 — 1.2 gal/day
Qs(1.1,13.85) 185-14 — _1.5 gal/day Q3(0.9, 14.86) 18614 — 1.4 gal/day

Thus, it appears that the instantaneous rate of consumption at t = 1 is about —1.45 gal/day.
AtP(4,6):
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Q Slope of PQ = 52 Q Slope of PQ = 52
Q:(5,3.9) 32=8 — —2.1 gal/day Q:(3,10) 06 — —4 gal/day
Q,(4.5,4.8) $3-¢ = —2.4 gal/day Q2(3.5,7.8) 736 = —3.6 gal/day
Q3(4.1,5.7) 21=6 = —3 gal/day Q3(3.9,6.3) 83-6 — _3 gal/day
Thus, it appears that the instantaneous rate of consumption at t = 1 is —3 gal/day.

AtP(8, 1):

Q Slope of PQ = 52 Q Slope of PQ = 52
Q1(9,0.5) %=1 = —0.5 gal/day Qi(7,1.4) La-l — —0.6 gal/day
Q2(8.5,0.7) 91=% = —0.6 gal/day Q4(7.5,1.3) 13=4 = —0.6 gal/day
Q5(8.1,0.95) 935-1 — —0.5 gal/day Q5(7.9,1.04) L04=1 — —0.6 gal/day

Thus, it appears that the instantaneous rate of consumption at t = 1 is —0.55 gal/day.
(c) It appears that the curve (the consumption) is decreasing the fastest at t = 3.5. Thus for P(3.5, 7.8)

Q Slope of PQ = 52 Q Slope of PQ = &¢
Qi1(4.5,4.8) $3-78 — 3 gal/day Qi(2.5,11.2) 278 — 3.4 gal/day
Q:(4,6) 6-78 — 3.6 gal/day Q:(3,10) D=8 — —4.4 gal/day
Q3(3.6,7.4) 23-18 — —4 gal/day Q3(34,8.2) 82-78 — —4 gal/day

Thus, it appears that the rate of consumption at t = 3.5 is about —4 gal/day.
2.2 LIMIT OF A FUNCTION AND LIMIT LAWS

1. (a) Does not exist. As x approaches 1 from the right, g(x) approaches 0. As x approaches 1 from the left, g(x)
approaches 1. There is no single number L that all the values g(x) get arbitrarily close to asx — 1.
(b) 1 (© 0 (@ 0.5

2. (@ 0
(b)y —1
(c) Does not exist. As t approaches O from the left, f(t) approaches —1. As t approaches 0 from the right, f(t)
approaches 1. There is no single number L that f(t) gets arbitrarily close toast — 0.

(d -1

3. (a) True (b) True (c) False
(d) False (e) False ) True
(g) True

4. (a) False (b) False (¢) True
(d) True (e) True

5. limO ﬁ does not exist because ‘7"| =3 =1lifx>0and ﬁ = 2, = —1ifx < 0. As x approaches 0 from the left,
X —

Ii_\ approaches —1. As x approaches 0 from the right, Ii_\ approaches 1. There is no single number L that all the

function values get arbitrarily close to as x — 0.
6. As x approaches 1 from the left, the values of X—il become increasingly large and negative. As x approaches 1

from the right, the values become increasingly large and positive. There is no one number L that all the function
values get arbitrarily close to as x — 1, so lim1 ﬁ does not exist.
X —
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Nothing can be said about f(x) because the existence of a limit as x — X, does not depend on how the function
is defined at xy. In order for a limit to exist, f(x) must be arbitrarily close to a single real number L when

x is close enough to xy. That is, the existence of a limit depends on the values of f(x) for x near Xy, not on the
definition of f(x) at x itself.

Nothing can be said. In order for limo f(x) to exist, f(x) must close to a single value for x near 0 regardless of the
X —

value f(0) itself.

No, the definition does not require that f be defined at x = 1 in order for a limiting value to exist there. If f(1) is
defined, it can be any real number, so we can conclude nothing about (1) from lim1 f(x) = 5.
X —

. No, because the existence of a limit depends on the values of f(x) when x is near 1, not on f(1) itself. If

liml f(x) exists, its value may be some number other than f(1) = 5. We can conclude nothing about lim1 f(x),
X — X —

whether it exists or what its value is if it does exist, from knowing the value of f(1) alone.

. lim_ (2x+5)=2-T)+5=-14+5= -9
X — —

cdim (X2 £ 5x—2) = (P +5(2) - 2= —4+10-2=4
X —

. tliﬁm6 8(t—=5)(t—7)=8(6—-5)(6—-7)=-8

lim2(x3—2x2+4x+8):(—2)3—2(—2)2+4(—2)+8:787878+82716

X — —

lim X2 =243 — 2 16. lim 3s2s—1)=3(3)[2(3) - 1] =2(;-1) =}
s — % N N

X — 2 X+ 2

[=))

1im1 302x — 1)2 = 3(2(=1) — 1)? = 3(=3)% = 27

X — —

y+2 242 4 4

lim

_ _ _ 4 _1
: y—2 y24+5y+6 — (22+52)+6 — 4+10+6 — 20 — 5

 im 5= =[5 - (I = ®)Y = (®3)" =24 =16
Jim 2z = 8)!/% = (2(0) - 8)!/% = (=8)!/* = -2

3

lim 3 = 3 =23 =
h—0 V3h+i+1  B3O+1+1 ~ V141~ 2

lim YShE4=2 _ i VShea-a Shedeo g (hed) =4 _ 5h o 5
im Y=—— = lim . = lim —/————+ = lim ——2 = lim ————
h— h— VEh+d442 T h=0 n(vsh+d+2)  h—0 h(Vshta+2)  h—0 VSh+d+2
= 5 = §

Va2 4

- 5 x=5 o1 1
Jim 50 = im0 = M 5 =55 =1

- x+3 X3 _ L1 _ 1
x£n13 x2+4x+3 —x£n13 (x+3)(x+1) —x£n13 x+1 7 =341 7 2
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: - : 5)x —2) :
lim X310y &EI6=D iy (x —2)=—F5—2=—-7
x— —5 x+5 X— =5 x+5 XH*5( ) g
. 2 _ . — — N
lim X=7x410 — iy &29=D iy (x —5)=2—5=—3
X— 2 x—2 X — 2 x=2 X — 2
: 2t— t+2)t-1 _ t+2 _ 142 _ 3
- Jim Ca = Am ey = im o =5 =3
: C43t+2 . q; G+ +H g5 t+2 _ —1+2 1
o lim s = Im ) e = my) S =S T s
. _ox—4 “2x+2) _ 1 =2 _=2_ _1
Jm ) e = lim, SGaegy = lim) ==
. S5y3+8y* g y:(5y+8) _ q: S5y+8 8 _ 1
ylino 37— 16y? 11_r)n0 Gy —16) — yIEPU W16~ "16 — 2
l_l 1—x . X 1 .
lim 2 = lim =~ = lim ( ): lim —2 = —1
x — 1 x—1 x— 1 x-1 X — 1 X x—1 X — 1
(D) +(x=1)
lim S17ET = i SR iy (e ) = lim Fey =2 =2
X — 0 X X — 1 X X — 1 \x=Dx+1) x X — 1 x=Dx+1) -1
ool o (4Dt D=1 @)@t _ (d+DA+D) 4
ulgnl uw—1 _ulgnl +ut+1) -1 _uh_I,n] wv4u+l T I4+141 T3
: V-8 _ 1 V=) (V+2v+4) _ Vi4ovid 44444 _ 12 3
VIE,nQ T _Vh_r,ng DDV T VIEHQ GIDMZEd T @) 328

lim 23— VA3 fim L=l =1

My S =M A A Ty VR T Ve

cdxex? o (G- o XQCHVX) VX)) g _ _
amy o= = im0 = imy 2-Vx *x15n4x(2+ Vx) =42+ =16

— lim QoDOEE3HY) g, GoD(VXE3H2) Jim (\/x+ +2):\/Z+2=4

. lim fx+‘3 2 o a2 (a3t <y x+3)-4

P/ s R DO )] Ut ) S Y RS R
x——1 **I X — —1 (x+1)(\/x2+ +3) —am, (x+l)(\/x2+ +3)
m _GEDeh a2 1
oy (x+1)(\/x2 +3) XH71 Vx2+8+3  3+3 3
fm, Vot g (WS (W) s
x—2 X2 x—=2 - (VeEri+s)  x—2 x-(VEri2+d)
G-t 12 4 1

— lim =26+ i —
o (x—2)(\/x2+l +4) I, eti2+a T Viers 2

e ) (x+2) (\/)427+3) . (x+2) (\/x2 +3)
_ X = lim = lim_ —0o 57—+
x~> -2 VxX245-3  x— -2 (\/x~+ - )(\/x2+ +3) x— =2 (x*+5) -9

— lim (+2) (V¥5+3) lim VX543 _ Vo943 3
I} x+2)(x-2) T, T x- -4 T T2
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lim 2=V¥=5 _  1im (2—~x2—5)<2+vx2—5) lim —4=(2=5
X — —3 x+3 X — —3 (x+3)(2+\/x275> X — 3(x+3)(2+\/x~ )
— lim 9—x2 lim B-x)B+x) — lim —x __6 _ 3
X — —3 (x+3)(2+\/x2—5) X — —3 (x+3)(2+\/x2 ) X — 32+\/x2 57 2444 2
(4-x) (5+\/ 9) ) —x) (5+\/x2+9>
lim = lim lim T35 (219
x—4 519 \/X+ T x—4 (5 x2+9)(5+\/x2 ) X —4 -(x*+9)
. (4—x)(5+\/x2+9) i (4—x)(5+\/x2+9) oy S+VE49 _ 5+/25 5
= Jm, 16— 2 = M TaoEr My Tae T T T3 T %
2
lim (2sinx — 1) = 2sin0—1=0—1=—1 44, lim sin’x = ( lim sinx) = (sin0)> =0>=0
x—0 x—0 x—0
lim secx = lim L =-L =1—1 46. lim tanx = lim 3% — sin0 — 0 _
X — 0 X — () COsX cos 0 1 X — 0 X — () COsX cos0 1
: l+x+sinx __ 14+0+sin0 __ 1+0+0 __ 1
xlgno 3cos X - 3cos 0 - 3 -3

limo(x2 —1)(2 —cosx) = (0> —=1)(2 —cos0) = (=1)(2 = 1) = (=1)(1) = —1

X —

Aim /x+4cos(x+7) = lim_\/x+4- lim cos(x+m)=+-7+4 -cosO=+4—m-1=4—7

limo\/7 + sec?x = \/ lim (7 + sec?x) = \/7 + lim sec’x = V7 +sec0=1/7+ (1> =22
X — X — X —

(a) quotient rule (b) difference and power rules
(c) sum and constant multiple rules

(a) quotient rule (b) power and product rules
(c) difference and constant multiple rules

@ Jim 0200 = [ Jim_f00] [ lim, 600] = (5)(~2) = ~10

(b) Jim, 2fx) g(x) = 2 [ Jim_ 0] | lim, 200 = 265)(-2) = ~

(©) Jim_[f(x) +3g(0)] = Jlim_f(x) +3 lim_g(x) =5+ 3(-2) = —

) 11m f(x) 5 _ 5
(d) xh;nc f—gx — Im 00 — lmgx)  5-(-2 7

X—C

(a) x11314 [ex)+ 3] = xlim g(x) + lim 3==34+3=0
(b) Xlim4 xf(x) = Xlim4 X - hm f(x) (4)(0) =0

© lim (g0 = | lim g(x)] = [-3P =9

lim g(x)

g(x) — x—4 — ;3 —
() x15n4 o0 -1 = Timfoo—Jim1 — 0-1 3

@ Tim [f00+g00] = lim {00+ lim 800 =7 +(=3) =4

(b) lim fx)- 200 = | lim 60| [ lim g00] = (7(-3) =~
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© xliinb 4el0) = [Xli—r>nb 4] [xlijnb g(X)} =@ =12

(d) X11_r>nb fx)/g(x) = x11_r>nb f(x)/xlgnb g(x) = 5 3

56. (a) XEm_Q [p(x) + r(xX) + s(x)] = XE}m_Qp(x)4—)(£m_2r(x)4—)(2111_2s(x) =4+0+(-3)=1
(b) tim p() <100 -500 = [ lim peo] | tim 10| | fim 0| = @)©0)(-3) =0

© lim [~4p(x) + S0V = |4 lim p(0+5 lim 19 / tim s = [~4(4) + 5O)Y-3 = £

57. lim (R lim LS o lim PEER = fim (24 h) =2

h—0 h—0 h—0
. - 2— - 2 . —_ _ . - .
58. lim RS CRN gy  Ashiod g DD iy (b 4) = 4
h—0 h—0 h—0 h—0
59. lim BEEW--BO-4 - fjy 3h =3
h—0 h h—-o h
G o) o Sl o 2224k “h 1
60. hlﬂno F _hlino = _hllno ~3h(—21h) _hlﬂno h@—2m — 4

A (V) (TR

; — _ T+h) -7 — 1 h _ 1 1
ol. hh—>m0 h h—0 h(\/7_ +h+\ﬁ) hh—>m0 h(\/7_ +h+\ﬁ) hh—>m0 h(\/7_ +h+\ﬁ) hh—>m0 VT+h7
_ _1
Q\ﬁ

. B0+ 13O T . (V3h+‘—1)(v3h+‘+1)7 . Gh+h-1  _ o
62. lim o = lim = lim —————~ = lim
h—=0 h—0 h(\/3h+1+1) h—0 h(\/3h+1+1) h—0 h(\/3h+1+1)
— T 3 _3
- hlgno V3h+1+1 2

63. lim /5 —2x2 = /5 -2(0)° = /5 and lim_ V5 —x2 = /5= (0)2 = \/5; by the sandwich theorem,
X — X —
lirn0 f(x) = \/g
X —

3h

64. lim (2 — x2) =2—-0=2and lim0 2 cos x = 2(1) = 2; by the sandwich theorem, lim0 gx) =2
X — X —

x—0

: x? _ 0 _ . 1. : : Xsinx __
65. (a) Xlgn (1 — F) =1—-¢=1and xlgn(J 1 = 1; by the sandwich theorem, Xlgn0 T cosx = |

(b) Forx # 0,y = (x sin x)/(2 — 2 cos x) y = (x sin XY/(2 — 2 cos x)
lies between the other two graphs in the . h(x) =1 3
figure, and the graphs converge as x — 0. \<
0.5
2
gX) =1~ (x /G)J
=2 Sl 1 2 X
66. @ lim (4 3) = lim }— tim 3 =1-0=1Land lim }=1L:bythe sandwich theorem,

: 1- 1

Xlgno c;)s X _ 1
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(b) For all x # 0, the graph of f(x) = (1 — cos x)/x> e
lies between the line y = % and the parabola

y = % — x2/24, and the graphs converge as x — 0.

N

67. (@) f(x) = (x2 — 9)/(x +3)

X -3.1 —3.01 —3.001 —3.0001 —3.00001 —3.000001
f(x) —6.1 —6.01 —6.001 —6.0001 —6.00001 —6.000001
X -29 —2.99 —2.999 —2.9999 —2.99999  —2.999999
f(x) -5.9 —-5.99 —5.999 —5.9999 —5.99999  —5.999999
The estimate is  lim 3 f(x) = —6.
X — —

(b)

f) =@ =9)/(x+3)

_x2-9 _ (x+3)x-=3) __ : : _ _
(© 00 =577 = S —x ~3ifx # —3,and_lim (x—3)=-3-3=6.

68. (a) g(x) = (x> —2)/ (x _ ﬁ)

X | 1.4 1.41 1.414 1.4142 1.41421 1.414213
g(x) | 2.81421 2.82421 2.82821 2.828413  2.828423  2.828426

(b)

y

V2 |
/ i .
/ﬁ V2

8 = (2 -2/ -12)

() g(x):xxiji: (X+(X22§23ﬁ) =x+ 2ifx;£\/§,andxgm\/§ (er\/E) :\/5+\/§:2\/§.

69. (a) G(x) = (x + 6)/ (x* +4x — 12)

X -5.9 -5.99 -5.999 —5.9999 —5.99999  —5.999999
G(x) —.126582 —.1251564 —.1250156 —.1250015 —.1250001 —.1250000
X —6.1 —6.01 —6.001 —6.0001 —6.00001 —6.000001
G(x) —.123456  —.124843 —.124984 —.124998 —.124999 —.124999
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(b)
y
10
ir3 2 X
-10
20 G(x) = (x + 6)/(x? + 4x — 12)
(¢) GKx) = (x2+xzf;6712) = (x+"6;x672) = Loifx # —6, andxgrrl6 L=t =-1=—0125
70. (a) h(x) = (x2 —2x —3)/(x% —4x + 3)
X 29 2.99 2.999 2.9999 2.99999 2.999999
h(x) 2.052631  2.005025  2.000500  2.000050  2.000005  2.0000005
X 3.1 3.01 3.001 3.0001 3.00001 3.000001
h(x) 1.952380  1.995024  1.999500  1.999950  1.999995  1.999999
(b)
10 -
m 1 3
)
20
hx) = (32 = 2x = 3)/(x% = 4x + 3)
(© h() = 5= = G50ty = M ifx #3,and lim 35 =355 =5 =2.
71. (@) fx)=(x>—-1)/(]x|—1)
X —1.1 —1.01 —1.001 —1.0001 —1.00001 —1.000001
f(x) 2.1 2.01 2.001 2.0001 2.00001 2.000001
X -9 -.99 —.999 —.9999 —.99999  —.999999
f(x) 1.9 1.99 1.999 1.9999 1.99999 1.999999
b
(b) y
2
|
|
Lo
: f@) =& =D/(x| -1
H X
-1 1
(x4 D(x— 1)
el -7 =x+1,x Oandx#1 . B B
@ 10 == = { (Xl:(i()g(l_)l) =1-x, x<0andx # —1’ and lim (1-x=1-=h=2

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI

Section 2.2 Limit of a Function and Limit Laws 53
72. (a) F(x) = (x> +3x+2)/(2 - [x])
X -2.1 —2.01 —2.001 —2.0001 —2.00001 —2.000001
F(x) —1.1 —1.01 —1.001 —1.0001 —1.00001 —1.000001
X -1.9 —1.99 —1.999 —1.9999 —1.99999 —1.999999
F(x) -9 —-.99 —.999 —.9999 —.99999 —.999999
(b) .
20 -
=) > *

—60

F(x) = (2 + 3x + 2)/2 - x])
x+2)(x+1)
:{ P x 0

X+2)x+1) _
W—X—i—l, x<0andx7$—2

(C) F(X) — x24+3x42

= ,and lim x+1)=-2+4+1=—1.
2 — x| X — —2

73. (a) g(@) = (sin H)/0

0 .1 .01 .001 .0001 .00001 .000001
g(0) 998334 999983 .999999 .999999 999999 .999999
0 —.1 —.01 —.001 —.0001 —.00001 —.000001
g(0) 998334 1999983 .999999 .999999 .999999 999999
i, 8 =1
b
(b) )
1 y= smTB (radians)
Ll L |\ Jo—1 0
-5 —47 =37 2w 0 ™27 37 4w Sw
NOT TO SCALE
74. (a) G(t) = (1 — cos t)/t?
t .1 .01 .001 .0001 .00001 .000001
G(t) 499583 499995 499999 5 5 )
t —.1 —.01 —.001 —.0001 —.00001 —.000001
G(t) 499583 499995 499999 ) 5 5

Jlim G = 0.5
(b)

v

G = 1 —gost
0.5 !

1 1 1 1
—0.0003 -0.0001 | 0.0001  0.0003

Graph is NOT TO SCALE
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75. lim _f(x) exists at those points ¢ where lim x* = lim x2. Thus, c* =¢c? = ¢? (1- 02) =0=c¢=0,1,0r —1.
X—C X —C X —C

Moreover, lim f(x) = lim x> =0and lim f(x) = lim f(x) = 1.
x—0 x — 0 X — —1 X — 1

76. Nothing can be concluded about the values of f, g, and h at x = 2. Yes, f(2) could be 0. Since the conditions of the

sandwich theorem are satisfied, lirn2 f(x) = =5 #0.
X —
g fwes _ Jmo-ims  Emiw-s _ i ) — 24§
77. 1= Xlgn = ;!fﬂx_)}iiné == = xlgn4 fx)—5=2(1) = Xlgn4 fx)=24+5="17.
g Jlmyf0 lim ) .
78. (@) 1= lim 9= e = = lim fo =4,

®) 1= tim =] tim, @[ tim 1= tim ©(L) = lim =2
X — —

2 -
X X — —2 2 X — —

79. () 0=3-0= [ lim @} L@? (x — 2)} = lim {(“’%5) (x — 2)} = lim [f() = 5] = lim f(x) -5

Lx — 2 2
= lim2 f(x) = 5.

X —

() 0=4-0=lim f<">*5} [Xlimz (x — 2)} = lim f(x) = 5as in part (a)

[x -2 X—2

r 2
80. (a) 0=1-0=[lim M] {lim x] - {lim @] {lim x'ﬂ = lim [f(—; -xﬂ — lim f(x). Thatis, lim f(x) = 0.
x—0 0 X X x—0 x—0

lx — 0 x — 0

) 0=1-0=[fim %] [1im x| = lim [ x| = tim ©. Thatis, lim = 0.
x—0 0 -0 X x—0

lx — 0 X

81. (a) Xliinoxsin%:0 Y

(b) —lgsiniglforx#o:

x>0 = —x<xsin % <x => lim0 x sin ¢ = 0 by the sandwich theorem;
X —

Xx<0 = —x xsin

=

X = lim0 x sin © = 0 by the sandwich theorem.

X —

82. (a) lim x2cos (%) =0 y
x — 0 X
h(z) = 22 cos(1/z?)
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(b) —1<cos (&) <lforx#0 = —x?<x%cos (5) <x* = lim0 x% cos (&) = 0 by the sandwich

X —

theorem since lim x% = 0.
x—0

83-88. Example CAS commands:

Maple:
f:=x->xM—-16)/(x — 2);
x0:=2;

plot( f(x), x = x0-1..x0+1, color = black,
title = "Section 2.2, #83(a)" );
limit( f(x), x = x0);
In Exercise 85, note that the standard cube root, x(1/3), is not defined for x<0 in many CASs. This can be
overcome in Maple by entering the function as f := x -> (surd(x+1, 3) — 1)/x.
Mathematica: (assigned function and values for x0 and h may vary)

Clear[f, x]
flx_J:=(x> — x> — 5x — 3)/(x + 1)?
x0=—1;h=0.1;

Plot[f[x],{x,x0 — h,x0 + h}]
Limit[f[x], x — x0]

2.3 THE PRECISE DEFINITION OF A LIMIT

L 1 )
T 7—>X
L. 1 5 7

Stepl:  [x—5]<é6 = —6<x—-5<6 = —6+5<x<6+5
Step2: 6+5=7 = 6=2,or—6+5=1 = 6=4.
The value of § which assures [x — 5] < § = 1 < x < 7 is the smaller value, § = 2.

2.
—t F—x
12 7
Stepl: [x—2|<éd = —6<x—2<6 = —0+2<x<6+2
Step2: —6+2=1= 6=1Lordé+2=7 = 6=>5.
The value of § which assures [x — 2| < § = 1 < x < 7 is the smaller value, § = 1.
3' —752—I3 —1;2 *
Stepl:  |x—(-3)|<é = -6<x+3<d=> —6-3<x<6-3
. _ 1 _1 __1 _s
The value of § which assures [x — (—=3)| < § = — 2 < x < — § is the smaller value, 6 = 1.
4.
~ - t F—x
- 3 _1
2 T2 T2
Stepl:  |x—(=32)[ <6 = —6<x+3<é6=>-b6-3<x<b6-3
. 3_ 1 _ 3_ 1 _
The value of 6 which assures |x—(— %)|<5 = —%<x<—%isthesmallervalue,ézl.
5' 4/(9 1;2 4}7 *

Stepl: |x—%|<é=> —b<x-1<b6= 0+1<x<6+3
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Step2:  —b+i=% = 6=Ltors+i=%=6=21.
The value of § which assures |x — 1| <6 = § < x < 2 is the smaller value, § = .
6.
—t +— } > X

2.7591 3 3.2391
Stepl:  |x—=3]<8 = —6<x—-3<86=> —-6+3<x<6+3
Step2: —6+3=2.7591 = § =0.2409,0r 6 +3 =3.2391 = 6 =0.2391.
The value of § which assures |x — 3] < § = 2.7591 < x < 3.2391 is the smaller value, § = 0.2391.

7. Stepl: [x—5|<6d = —6<x—5<8 = —6+5<x<b6+5
Step 2:  From the graph, —6 +5=49 = §=0.1,or6 +5=5.1 = 6 =0.1; thus 6 = 0.1 in either case.

8. Stepl: |[x—(-3)|<d = —-6<x+3<éd=>—-6-3<x<6-3
Step2:  From the graph, -6 —3 = —-3.1 = §=0.1,0or6 —3 =-29 = 6 =0.1; thus 6 = 0.1.

9. Stepl: |x—1]<éd = —d<x—1<éd6 = —b6+1<x<b6+1

Step2: Fromthe graph, =6 +1=2 = §=L,or6+1=2 = §=2;thusé = L.

10. Stepl:  |x—=3] <6 = —6<x—-3<6 = —6+3<x<6+3
Step 2:  From the graph, —6 +3 =2.61 = § =0.39,0or6 +3 =3.41 = 6 = 0.41; thus 6 = 0.39.

I1. Stepl: |x—2| <6 = —6<x—2<6 = —0+2<x<6+2
Step2:  From the graph, =6 +2=1/3 = 6 =2 — /3~ 0.2679,0r6 +2=1+/5 = 6 = /52~ 0.2361;
thusé:\/gfz

12. Stepl: |x— (D] <éd = —0<x+1<éd = —6—-1<x<éd—1
Step 2:  From the graph, —6—1:—§ = 5:@%0.1180,0r5—1:—§ = 6:2_\/3 ~ 0.1340;

thus 6 = \/5272.

13. Step i |x— (-] <éd = —6<x+1<éd = -06—-1<x<bd—1
Step2:  Fromthe graph, =6 — 1= -1 = § =7~ 077, 0r6 —1=—13% = 5 =0.36; thus § = 5= = 0.36.

14. Stepl: |x—1| <6 = —-6<x-1<6= —6+1<x<o+}
Step2:  Fromthe graph, —=6 + § = 557 = 6 = § — 747 ~ 0.00248, or 6 + § = 145 = 6 = 145 — 3 ~ 0.00251;

1
2.01 2.01 1.99 1.99
thus 6 = 0.00248.

15. Step1:  |(x+1)—5/ <00l = |[x—4] <00l = —0.01 <x—4<00l = 399 <x <40l
Step2:  |x—4|<d = —6<x—4<éd=> —6+4<x<é+4 = 6§=0.01.

16. Step 1:  |2x —2) —(—6)] < 0.02 = [2x+4]| <0.02 = —0.02<2x+4<0.02 = —4.02 <2x < —3.98
= —2.01 <x<-199
Step2: [x—(—2)|<é = —6<x+2<éd=> —-6-2<x<6—-2 = 6=001.

17. Step 1: ’\/x+1—1‘<0.1 = 01<VX+1-1<01=09<xt1<1l= 08l <x+1<121
= —0.19 <x<0.21

Step2:  |x—0] <86 = —6 <x<é.Then, -6 = —0.19 = § = 0.19 or 6 = 0.21; thus, é = 0.19.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



19.

20.

21.

22.

23.

24.

25.

26.

27.

. Step 1:
Step 2:

Step 1:

Step 2:

Step 1:
Step 2:
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lVx=1] <01 = —01</x-1<01 = 04<,/x<06 = 016 <x<036
x—3<é6 = s<x-1<é6=> —6+t<x<o+i
Then, =6+ =0.16 = § =0.090r 6 + ; = 0.36 = 6 = 0.11; thus 6 = 0.09.

‘\/19—x—3‘<1 = 1< y/19-x-3<1=2</19—x<4=4<19-x<16

= 4>x—19>—-16 = 15>x>3o0r3<x<15
x—10] <6 = —6<x—10<6 = —6+10<x <6+ 10.
Then -6 +10=3 = 6 =7,or6 +10=15 = § = 5;thus 6 = 5.

‘\/x—7—4‘<1 = —1<yVx—T-4<1 =2 3<y/x-7<5=29<x-7<25 = 16<x<32

x —23] <6 = —6<x—-23<6 = —6+23<x<6+23.
Then —6 +23 =16 = 6§ =T, 0r6 +23 =32 = 6§ =9;thusé = 7.

|1 -2 <005 = —005<1—-1<005=02<1<03=D>x>Ro0or<x<5
x—4| <6 = -6<x—4<éd=> —b6+4<x<b+4.
Then —6+4=2or6 =2 0oré6+4=50r6=1;thus 6 = 3.

X2 -3] <01 = —01<x2-3<01 = 29<x?<31 = /29<x< 3.1
‘x—\/g‘<(5 = —5<x—V3<6=> —6+V/3<x<6+3.
Then —6 + /3 =129 = 6§ =1/3—/29~0.0291,0r6+ /3 =1/3.1 = §=1/3.1 - /3 ~0.0286;

thus 6 = 0.0286.

X2—4] <05=—05<x2—4<05=35<x><45=/35<|x| <45 = —/45<x< —/35,
for x near —2.

X —(-2)|<é = —6<x+2<§d=> —-6—-2<x<6—-2.

Then —6 — 2= —\/45 = 6§ =/45—-2~0.1213,0r6 — 2= —/35 = 6§ =2 — /3.5~ 0.1292;
thuséz\/ﬁ—ZNO.ll

1 1 11 1 9 10 10 10 10
(D] <01l = —01<i+41<0l = —F<i<—-7 = -—p>x>—Fo—FIx<—1.

x—(-D|<é = -06<x+1<d=>-6-1<x<6—1.

Then—6—1=- = 6=Lor6-1=-1 = §=1L;thusé = 3.

(x2=5)—11]<1 = [X¥2—-16/<1 = -1<x*-16<1 = 15<x*<17 = VI5<x< /17
x—4|<éd = —6<x—4<b=> —6+4<x<b6+4.

Then -6 +4=+/15 = 6 =4—/15=0.1270,0or 6 +4 = /17 = 6 = /17 — 4 =~ 0.1231;
thus 6 = /17 —4 =~ 0.12.

2 -5l<1l = -1<2-5<1 =24<20 <= 1>5>8 = 30>x>200r20 < x < 30.
x —24| <6 = —6<x—-24<6 = —6+24<x<b6+24

Then -0 +24=20 = 6=4,0r6+24 =30 = 6 =06;thus = 6 =4.

|mx — 2m| < 0.03 = —0.03 < mx —2m < 0.03 = —0.03 4+ 2m < mx < 0.03 +2m =
0.03 0.03
252 <X <24 52
x—=2|<éd = —6<x—-2<6 => —6+2<x<6+2.
Then—6+2:2—% = 5:0%,0r6+2:2+0;nﬁ = 6:0%. Ineithercase,éz%.
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Stepl: |mx—3m/<c = —c<mx—-3m<c = —c+3m<mx<c+3m = 3-2<Ix<3+
Step2: |[x—3]<d = -6<x—-3<éd6=> —-6+3<z<é6+3.
Then -6 +3=3—-+ = 6= _,0or6+3=3+ = 0= . Ineithercase, 6 = .

m

Step 1: |(mx+b)—(%+b)|<c = —c<mx—3<c= —c+yg<mx<c+3z = %—%<X<%+%.

Step2:  [x—1| <6 = b<x—-Li<é6= b+i<x<éi+l
Then —6+3=1-£& = §=S oré6+1=1+< = §= < Ineithercase, § = <.
Step 1:  |(mx +b) — (m +b)| < 0.05 = —0.05<mx —m < 0.05 = —0.05+m < mx < 0.05+m
0.05 0.05
=12 <x<1+ 72
Step2:  |x—1]<d = —6<x—-1<6 = -6+1<x<é+1.
Then—é—i—lzl—%:>5:O'm£,0r6+1:1+0'mﬁiéz%.lneithercase,ézo%.
lim, (3-2x) =3-203)=-3
X —
Stepl:  |(3—2x)—(=3)] <002 = —0.02<6—-2x<0.02 = —6.02< —2x < —5.98 = 3.0l >x>299or
2.99 < x < 3.01.
Step2: 0<|x—3]<6 = —6<x—-3<6=> —-6+3<x<é6+3.
Then -6 +3 =299 = 6 =0.01,or6 +3 =3.01 = 6 =0.01; thus 6 = 0.01.

lim (=3x—=2)=(=3)-D)—-2=1
X — —
Step1:  |(—3x—2)—-1]<0.03 = —-0.03< -3x—-3<003 = 001l >x+1>-0.01 = —1.0l <x < —0.99.
Step2: |x—(—D|<éd = —d<x+1<d = —-6-1<x<6—1
Then -6 —1=-1.01 = 6=0.0l,0or6 —1=-0.99 = § = 0.01; thus 6 = 0.01.

lim =2 — ljm &£26=2 _ lim (x+2)=2+2=4x#2
X —

X —2 X—2 X — 2 (x=2)

Step 1: ](*2:24) —4‘ <005 = —0.05 < 8= _ 4 2005 = 395 <x+2 <405 x £2

X x—2)
= 195 <x <205 x#2.
Step2: [x—2| <6 = —6<x—-2<6 = —6+2<x<b6+2.
Then —6+2=1.95 = § =0.05,0or6 +2 =2.05 = 6 = 0.05; thus § = 0.05.

. x246x+5 _ . E+HE+D : _
m g SEEE = lim ) BE = im kb D = 4 S
Step 1: (%;5) —(—4)| <005 = —005 < CEIED 4 4 £0.05 = —4.05 < x+ 1 < ~3.95x # 5

= —5.05 <x< —4.95,x # —5.
Step2:  |x—(=5)|<éd = —6<x+5<6 = —-6-5<x<b6—5.
Then —6 —5=-5.05 = 6 =0.05,0or6 —5=—-495 = 6 = 0.05; thus 6 = 0.05.

lim /T 5x = /T=503) = /16 = 4
X — —

Step 1: ‘\/1—5)&—4‘ <05 = —05<1—-5x—4<05= 35<+/1—5x<45 = 1225 < 1 — 5x < 20.25

= 1125 < -5x < 19.25 = —3.85 <x < —2.25.
Step2: |x—(-3)|<éd = —6<x+3<d=> —6-3<x<6—-3.
Then -0 —3=-385 = 6 =0.85,0or6 —3=—-225 = 0.75; thus 6 = 0.75.

4

lim ¢=%=2
x—2 X 2
. 4 4 4 10 X 10 10 10 5 5

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



37.

38.

39.

40.

41.

42.

43.

44.

Step 2:

Step 1:
Step 2:

Step 1:
Step 2:

Step 1:

Step 2:

Step 1:

Step 2:

Step 1:

Step 2:

Step 1:

Step 2:

Step 1:
Step 2:

Step 1:

UPLOADED BY AHMAD JUNDI

Section 2.3 The Precise Definition of a Limit 59

x—=2|<éd = —6<x—-2<6 => —6+2<x<b6+2.

Then—6—|—2:% = (5:%,0r(5+2:% = 6:%;thu56:%.
[O—x)—5|<e=>—c<d—x<ec=>—-€—4<x<e—4=>e+4>x>4—c=>4d—e<x<4d+e
x—4| <6 = —6<x—4<éd=> —b6+4<x<b+4.

Then -6 +4=—€+4 = 6 =¢c,or6 +4=c¢+4 = 6 =¢c. Thus choose 6 = e¢.

Bx=7)=2[<e = —e<3x—-9<e = 9—-e<3x<9+e = 3-5<x<3+3.
x—3]<é = —6<x—3<é6=> —6+3<x<6+3.

Then—6+3:3—§ = 6:§,or6+3:3+§ = 62%. Thuschooseézg.

‘\/x—5—2‘<e S e VX—5-2<e=2—c<\/x—5<24¢c= Q- <x—5<2+e?
= 2-e’+5<x< 2+ +5.

X—-9|<é = —6<x—-9<86 => —-06+9<x<6+9.

Then —6 +9=€2—4¢+9 = §=4de—eX,or6+9=e2+4e+9 = 6 = 4e + €2. Thus choose

the smaller distance, § = 4e — €2.

‘\/4—x—2‘<6 o e \/A_x—2<e = 2—e<\Jh-x<24€e= Q-2 <d—x<(2+e)?
= 24 <x—4<—-2—-€? = —Q+eP+4<x<—-2—¢€?+4.

x—0] <6 = -6 <x<6é.

Then —6 = -2+ € +4=—€>—4e = 6 =4e+ €%, 0r 6 = —(2 — €)®> + 4 = 4e — €2. Thus choose

the smaller distance, § = 4e — €2.

Forx# 1L, [xX2—1|<e = —e<x*—1<e=>1-e<x*<1l4+e= V]I-e<|x|<1l+e¢

= /1—e<x<+/1+enearz =1.

x—1<é = —0<x—1<é6=> —6+1<x<d+1

Then —6+1=+v1—¢ = 6§=1—+/1—¢cord6+1=+/14+¢ = 6 =+/1+¢— 1. Choose

6 = min {1 —V1—€+1+e— 1}, that is, the smaller of the two distances.

Forx# -2, x> 4| <e = —e<x’—4<e = 4—e<xX2<d+e = Vhd—e<|x|<d+e
= —y/4+e<x<—v4—enearx = —2.
X —(-2)|<é = —6<x+2<§=> —6—-2<x<6—-2.

Then —6 —2=—\/4+¢e¢ = 6=+/4+ec—2,0r6 —2=—\/4—¢ = § =2—+/4—¢. Choose
6:min{ Ate—22— /4 }

1 1

f1-ll<e=> —e<i-l<e=l-e<i<l+de= = <x<it

x—1l<éd = —6<x—-1<6=>1-6<x<1+6.

Thenl—é=1 = 6=1- =S, orl+6=11 = 6= —1=1.

Choose 6 = ﬁ,the smaller of the two distances.

1 1 1 1 1 1 1 1-3¢ 1 1+ 3¢ 3 2 3
|p—§’<€:> _6<F_§<6:> §_E<F<§+6:> T<F<T = 1735>X >1+3€

3 [ 3 [_3 /3
= 1o < X< /155 or (/i <x < 1,—36forxnear\/§.
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Step 2: ‘x—\/g‘<6:>—5<x—\/§<5:>\/§—5<X<\/§+5.
Then /3 — 6 = 1f36:6=\/§—\/ﬁ,0r\/§+5: 133€:>6:\/133e_\/§'
Chooseézmin{\/g—\/ﬁ,\/lfge—\/3}.

Stepl: [(558) — (-6 < = —e<x-3+6<ex£-3 = —e<x+3<e > —e-F<x<e-3

Step2:  |x—(-3)|<éd = —6<x+3<6d=> —6-3<x<b6-3.
Then -6 —3=—-€—3 = 6 =¢c,or6 —3=¢—3 = 6 =¢. Choose 6 = ¢.

Step 1: ‘(ﬁ——l)—z‘« = e<(xtD-2<exA1 = 1-c<x<lte

x—1
Step2: |x—1]|<§ = —6<x—-1<6=>1-6<x<1+6.
Thenl —6=1—¢ = 6=¢c,orl+6=1+¢ = 6§ =¢. Choose § = e.

Stepl:  x<1:|4—-2x)—2|<e = 0<2—-2x<esincex <1.Thus, 1 —§ <x <0
X 1|6x—4)—2]<e = 0<6x—6<esincex 1.Thus,1<x<1+¢.
Step2: |x—1]|<d = —6<x—-1<6=>1-6<x<1+6.
Thenl—ézl—g:>5:§,0r1+5:1—|—g:>6:§.Choose(5:§.
Stepl: x<0: 2x—0/<e = —e<2x<0 = —§<x<0;
x 0:]3-0[<e=0<x<2e
Step2:  [x—0] <6 = =6 <x<é.

Then—éz—% = 62%,0“5:26 = 6 = 2e. Chooseéz%.

1

By the figure, —x < x sin % <xforallx >0and —x xsiny xforx < 0. Since lim0 (—x) = lirn0 x =0,
X — X —

then by the sandwich theorem, in either case, lim0 X sin % =0.
X —

By the figure, —x? < x? sin 1 < x? for all x except possibly at x = 0. Since lim (—x*) = lim x% = 0, then

X — X —

by the sandwich theorem, lim x?sin 1 = 0.
x—0 X

As x approaches the value 0, the values of g(x) approach k. Thus for every number € > 0, there existsa é > 0
suchthat 0 < [x — 0] < 6 = |g(x) — k| <e.

Writex =h+c. Then0 < [x —¢c|<d e - <x—c<éfx#Fce —6<(h+c)—c<dh+c#c
& —6<h<6h#0<0< |h—0|<é.
Thus, limf(x) = L < for any € > 0, there exists 6 > 0 such that [f(x) — L| < e whenever 0 < |x —c| < §

< |f(h+c¢) — L] < e whenever 0 < |h — 0] < 6 @}llirréf(h—l—c):L.

Let f(x) = x2. The function values do get closer to —1 as x approaches 0, but lim0 f(x) = 0, not —1. The
X —

function f(x) = x? never gets arbitrarily close to —1 for x near 0.
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54. Let f(x) = sinx, L = 1, and xo = 0. There exists a value of x (namely, x = ) for which |sin x — £| < € for any given

€ > 0. However, 1im0 sin X = 0, not % The wrong statement does not require X to be arbitrarily close to Xy. As another\
X —

L= %, and xo = 0. We can choose infinitely many values of x near O such that sin % = % as

you can see from the accompanying figure. However, lim0 sin % fails to exist. The wrong statement does not require all
X —

1

example, let g(x) = sin o
values of x arbitrarily close to Xy = 0 to lie within ¢ > 0 of L = % Again you can see from the figure that there are also
infinitely many values of x near O such that sin % = 0. If we choose € < % we cannot satisfy the inequality

|sin % - %‘ < ¢ for all values of x sufficiently near xo = 0.

y=1
17

— e - - - — ——- HH +

55. |A—9] <001 = —0.01 <7 (3)?-9<00l = 899< ™ <901 = #(899) <x*< (9.0
= 24/32 <x <2,/2% 0r3.384 < x < 3.387. To be safe, the left endpoint was rounded up and the right

endpoint was rounded down.

56. V=Rl = y=1= [y —-5/<01 = -01<2-5<01=49<P<51 =3 & ¥=
(120)(10) (120)(10)
CF2 <R < B0 = 23,53 <R <2448,

To be safe, the left endpoint was rounded up and the right endpoint was rounded down.

57. (a) —6<x—1<0=1-6<x<1 = f(x)=x. Then [f(x) —2|=|x—2|=2—x>2—1=1. Thatis,

[fx) —2| 1 % no matter how small 6 is taken when 1 — 6 < x <1 = lirn1 f(x) # 2.
X —

b) 0<x—-1<8§=1<x<1+86 = f(x) =x+1. Then [f(x) — 1| = |[(x+ 1) — 1| = |[x| = x > 1. Thatis,
[f(x) — 1| 1 no matter how small § is taken when1 < x <146 = Xliéml f(x) # 1.

) —6<x—1<0=>1-6<x<1 = fx)=x. Then|fx)— 15|=|x—-15/=15—-x>15-1=05.
Also,0<x—1<6 = 1<x<1+6§ = f(x) =x+ 1. Then [f(x) — 1.5| = |(x+ 1) — L.5] = |x — 0.5]
=x—05>1-0.5=0.5. Thus, no matter how small ¢ is taken, there exists a value of x such that
—6 <x—1< ébut [f(x) — 1.5] % = Xliin1 f(x) # 1.5.

58. (a) For2<x<2+4+6 = h(x) =2 = |h(x) —4| =2. Thusfore < 2, |h(x) —4| € whenever2 < x <2+ éno
matter how small we choose 6 > 0 = lim2 h(x) # 4.
X —

(b) For2 <x<2+4+6 = h(x)=2 = |h(x) —3| =1. Thusfore < I, |h(x) —3| € whenever2 < x <2+ 8 no

matter how small we choose 6 > 0 = lim2 h(x) # 3.
X —

(c) For2 —§ <x <2 = h(x) =x%so0|h(x) — 2| = [x* — 2|. No matter how small § > 0 is chosen, x? is close to 4
when x is near 2 and to the left on the real line = [x? — 2| will be close to 2. Thusif e < 1, [h(x) — 2| €
whenever 2 — § < x < 2 no mater how small we choose § > 0 = lim2 h(x) # 2.

X —

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI
62 Chapter 2 Limits and Continuity

59. (a) For3—6<x<3= f(x) >48 = |f(x) —4| 0.8. Thusfore < 0.8, [f(x) —4| € whenever
3 — § < x < 3 no matter how small we choose 6 > 0 = lim3 f(x) # 4.
X —

(b) For3<x<3+46 = f(x) <3 = [f(x) —4.8] 1.8. Thusfore < 1.8, [f(x) —4.8] e whenever3 <x <3+
no matter how small we choose 6 > 0 = lim3 f(x) £ 4.8.
X —

() For3—6<x<3 = f(x) >4.8 = |f(x) —3] 1.8. Again, fore < 1.8, [f(x) — 3| € whenever3 —4é <x <3
no matter how small we choose 6 > 0 = lim3 f(x) # 3.
X —

60. (a) No matter how small we choose 6 > 0, for x near —1 satisfying —1 — 6 < x < —1 + 4, the values of g(x) are
near I = [g(x) — 2|is near 1. Then, for e = 1 we have [g(x) —2| 3 for some x satisfying
—1-6<x<—-1+860r0<|x+1]<b6 = 1im1g(x)7é2.

X — —

(b) Yes, lim | g(x) = 1 because from the graph we can find a 6 > 0 such that |g(x) — 1| < €if 0 < |[x — (—=1)| < 6.
X — —

61-66. Example CAS commands (values of del may vary for a specified eps):

Maple:
f:=x->(x"-81)/(x-3);x0 := 3;
plot( f(x), x=x0-1..x0+1, color=black, # (a)
title="Section 2.3, #61(a)" );
L := limit( f(x), x=x0 ); # (b)
epsilon :=0.2; #(c)

plot( [f(x),L-epsilon,L+epsilon], x=x0-0.01..x0+0.01,
color=black, linestyle=[1,3,3], title="Section 2.3, #61(c)" );
q := fsolve( abs( f(x)-L ) = epsilon, x=x0-1..x0+1); # (d)
delta := abs(x0-q);
plot( [f(x),L-epsilon,L+epsilon], x=x0-delta..x0+delta, color=black, title="Section 2.3, #61(d)" );
for eps in [0.1, 0.005, 0.001 ] do # (e)
q := fsolve( abs( f(x)-L ) = eps, x=x0-1..x0+1 );
delta := abs(x0-q);
head := sprintf("Section 2.3, #61(e)\n epsilon = %5f, delta = %5f\n", eps, delta );
print(plot( [f(x),L-eps,L+eps], x=x0-delta..xO+delta,
color=black, linestyle=[1,3,3], title=head ));
end do:
Mathematica (assigned function and values for x0, eps and del may vary):
Clear[f, x]
yl: =L —eps; y2: =L +eps; x0 = 1;
flx_]: = (3x> — (7x + 1)Sqrt[x] + 5)/(x — 1)
Plot[f[x], {x, x0 — 0.2, x0 4+ 0.2}]
L: = Limit[f[x], x — x0]
eps = 0.1; del = 0.2;
Plot[{f[x], y1, y2},{x, xO — del, x0O + del}, PlotRange — {L — 2eps, L + 2eps}]
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2.4 ONE-SIDED LIMITS

1. (a) True (b) True (c) False (d) True
(e) True () True (g) False (h) False
(i) False (j) False (k) True (1) False

2. (a) True (b) False (c) False (d) True
(e) True () True (g) True (h) True
(i) True (j) False (k) True

3. (@ lim fx)=3+1=2, lim fx)=3-2=1
x — 2% X — 2
(b) No, lim_f(x) does not exist because lim f(x) # lim f(x)
X — 2 x — 21 X — 2
. _ 4 _ . _ 4 _
(© lim fo)=3+1=3 lim f)=3+1=3

(d) Yes, lim f(x) =3 because 3 = lim_ f(x) = lim f(x)
X — 4 X — 4 X — 47+

4. (@) Ilim f(x) = % =1, lim fx)=3-2=1,f2)=2
X — 2% X — 2
(b) Yes, lim_ f(x) = 1because 1 = lim f(x) = lim f(x)
X — 2 X — 21 X — 2
(¢) lim fx)=3-(-1)=4, lim f(x)=3-(-1)=4
x— -1 x— —1*%
(d) Yes, lim f(x) =4because4 = Ilim f(x)= Ilim f(x)
x— —1 x— —1 x — —1%
5. (a) No, lin}) . f(x) does not exist since sin (%) does not approach any single value as x approaches 0
X —
(b) lim fx)= lim 0=0
x—0 x—0

(¢) lim f(x) does not exist because lim f(x) does not exist
Xx—0 X — 0F

6. (a) Yes, lir%+ g(x) = 0 by the sandwich theorem since —/x < g(x) < /x when x > 0
X —
(b) No, linb _ g(x) does not exist since /X is not defined for x < 0
X —

(¢) No, lim g(x) does not exist since lim g(x) does not exist
x—0 x—0

7. (a) (b) lim fx)=1= lim f(x)
y X — 1 x — 1t
, (c¢) Yes, lim1 f(x) = 1 since the right-hand and left-hand
| _1x x#1 X —
1 ’ {0, x=1 limits exist and equal 1
- T ;
b
8. (a) (b) lim fx)=0= lim_ f(x)
y _{1-%,”1 x— 1" x—1
Sz o=l (¢) Yes, lim1 f(x) = 0 since the right-hand and left-hand
2+ [ X —
/\ limits exist and equal 0
> A N 2
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(a) domain: 0 <x <2 VT-x2, 0<x<1
range: 0 <y <landy=2 - ; 1f’2‘<2
(b) XliLnC f(x) exists for ¢ belonging to oL ’ .
0,Hu(,2)
(C) X:2 16 & —0
d x=0 \
0 1 ; *
(a) domain: —oo0 < X < 00 .
range: —1 <y <1
(b) Xli_r’nC f(x) exists for ¢ belonging to T
(—00, ~1) U (=1,1) U (1, 00) )
(c) none 2 T2 "
(d) none T
2k
x, -1<x<0 or 0<x<1
):{1, x=0
0, x<-lorx>1
. x+2 _ [—05+2 _ [32 _ . x—1 _ [1-1 _ _
L Hm e \V = i Viz = V3 12. xlin}+ xt2 - \1v2 = V=0
. X 2x+5) -2 2(=2)+5 _ 1)
X_I}IET (x+1) (xzix) = (—2+1) ((—2)2+(—2)) =2 E) =1
. X+6) (3-x 146) (3-1 2
Jim () (550) (7F) = (1) (52) G5 = (5) (1) (5) =1
. m N VhItah+5-+/5) (Vb2 +ah15++/5
lim lim
h— 0t h—>0+ h Vh2+4h+5+4/5
lim (h®+4h+5)—5 lim h(h +4) _ _0+4 2
0 h(\/m+\/—) b h(\/h2+4h+ +\/—) V55 s
lim V/6—+/5h2+11h+ 6 \/5h°+11h+ lim (\/6—\/5h2+11h+6) (\/6+\/5h2+11h+6)
h— 0" T ho V6++/5n2+11h+6
— lim 6—(5h2+ 11h+6) lim —h(5h+ 11) _ =O+1) _ 11
h—0- h(\/3+\/5h2+11h+6) - h(\f+\/5h2+11h+) V6+1/6 2\/6
(@ lim  (x+3) bl = im (x+3) n (|x +2| = (x +2) forx > —2)
= lim x+3)=((-2+3)=1
x — —2%
®) lim 30 = dim x4 3) [272)] (x+2| = ~(x +2) forx < ~2)
= lim (x+3)(-1D)=—(-2+3) = -
X — —
lim  YZ6oD iy V262D (x—1]=x—1forx > 1)
x— 1t =1 x—1+  &=D
= 11II}+ V2x =+4/2
(b) tim_ VG oy V2D (x—1]= —(x - Dforx < 1)
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i Bl 3 _ i o _2
@ lim =3 ©) lim g =3
(a) lini (t—[t]))=4-4=0 (b)tlinif(thtJ):4f3:1
. 20
911_1}11 S“:/—\z/; = X11310 r = (where x = \/50)
lim oK — i ksnkt — jjy ksl fiym S0 ] =k (where 6 = kt)
t—0 ¢ t—0 t 0—0 0—0
. sin3y __ 1 13 3sin3y _ 3 q; sindy __ 3 s sinf _ 3 —
ylgn0 it ylgn0 = =3 ylgn0 = =1 algno 5 1 (where 6 = 3y)
i _h 1.3y _1 p 1 _1 1 1. 1=1 —
hlgrgf sin 3h _hlf%f (3-a5%) =3 hlimof @Iy = 3 (91361 ;f’) =3-1=3 (where 6 = 3h)
. tan2x __ 13 (;;21) _ 1 sin2x  __ : 1 : 2sin2x | __ _
L = Jim,y S5 = iy S = (xh—r>n0 C‘“_2X> (xlgno T) =12=2

2t

lim im L =2 lim ‘90“:2(1imcost) 1) =2.1-1=
t—0 tant t—0 (&) t—0 sint t—0 lim <3

: Xcse2X . 1: X R 1 _ (1 1 2X : 1 _ (1. _ 1
Xlﬂno cos5x Xlgno (sin2x cosSx) - (2 Xlgno sin 2x) (Xh_r,no cosSx) - (2 1) (D= 2

. . 2 .

lim_6x%*(cot x)(csc 2x) = lim X — Jim (3cosx- X -2 ) =3-1-1=
X — 0 X — () sinxsin2x X — 0 sinx  sin 2x

lim XXX iy (X 4 xeosx ) i (2. L)y lim X
X —s () SinXcosx X — (0 \sinxcosx sin X cos x X —» (0 \sinx cosx X s ( Sinx

- 1i BN IV H 1 i 1) = —

= Jim, () - Jim, () + lim () = (a0 + 12

: xX2—x+sinx _ 713 x 1 4, 1(sinx)\) _n_1_,1 _
Jim SR = lim (5 -5 45 () =05+ 53(1)=0

. 1—cosf _ 1: (1—cosf)(1+cosb) _ 1 1 —cos?f 1 sin® 9
ell_rpo sin20 T elgno (2sinfcosf)(1+cosh) — 915110 (2sinfcosB)(1+cosf) — 6151’10 (2sinf cos 0)(1 + cos 0)
1 sin § _ _0 _

= elgno Beosd)(170050) — @)@ — 0

x(1 = cosx) 1 cosx Ljim (Lesx)

. X—X COSX __ 1: x(l=cosx) _ q: o2 1 o 9 miT _ 50
lim S = lim o = lim 23— = lim o = e = =0
x =0 x— 0 x— 0 mE T xS0 ()T i ()

lim =<0 — Jim 8 — ] gince =1 —cost — Oast— 0
t—0 —cos t g—o0 ¢

lim 0600 _ iy snf — § gince# =sinh — Oash — 0
h—0 sin h 0 —0 [4

: sinf __ sin 20 _ 1 13 sinf 20 _ 1 1. _ 1
6]11‘10 sin26 glino (sin29 29) -2 0]51‘10 ( 0 sin29) -2 1-1= 2

: sin5x __ 1; sin5x _4x 5\ _ 5 7q; sin5x | _4x _5.1.1-35
Jim G = lim (k53 =13 im, (5 - mw) =1-1-1=3
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lim fcosd =0-1=0
6—0

cos 260

cos 26 _ cos2 __ 1
sin 26 1 m

2sinfcosf 02(,050 2

6lim sinf cot20 = lirnosm 0

— —

= lim sinf
60— 0

: tan3x __ 13 sin 3x 1 1 sin 3x 1 U8 3
xlﬂ 0 sin 8x xlli}llo (cos 3x  sin SX) - xlli}llo (cos 3x sin8x  3x 8)
_ 375 1 sin 3x 8x _ 3 .1.1. _ 3
=g lim, (ovs) (58) () =5 1-1-1=3
: sin3ycotSy _ q: sin 3y sin4y cos 5y __ 1: sin 3y sin 4y cos S5y 3-4-5y
ylgno ycotdy yhl,no ycosdysinsy yhl,no y cos 4y sin 5y 3-4-5y

IS
oIS

T in 3 in 4 5 5 34\ _
- ylgno (Sgyy> (Slzyy> (siny5y> <2224z/) (?) =1-1-1-1-

sinf

. tanf 6 sinfsin30  __ 1; sin @) ( sin 30 3 _ 3\
915110 02cot30 hmo 9;;:1‘29” - hmo 02 cos 0 cos 30 615110 ( 0 ) ( 30 ) (Cosﬂcos 30) - (1)(1) ( 1-1) =3
. . g it . 540 (2sin 6 cos 0)? . fcos46 (4sin? fcos 6
Ii . 9200t4§ lim it — hm €2cos 4(; sin?20 li Gc?<249 (2@21nt9?0< 0" _ lim co's2 ( s;n cos )
§ — 0 sin fco220 -0 sm29 ur\ 79 7 sin Ocos?20sind0 g — 0 sin 0 cos?20 sin 460 §—o0 sin 6 cos?26 sin 40
I 40 cos4fcosh _ 1: 460 cosd4fcos? 6\ __ 1 cos4fcos? 6\ __ 1 1_12 _
- glgno cos220sin4d T 911110 (sin46) ( cos226 ) - 911110 (““49 ) ( cos226 ) - (1) ( 12 ) =1
Yes. If hm f(x) =L = lim_f(x), then lim_ f(x) =L. If lim f(x) # lim_f(x), then lim_f(x) does not exist.
X—a Xx—a X —a’ X —a X —a

x—»a

Since lim f(x) = L if and only if lim+ f(x) = L and hm f(x) = L, then l1m f(x) can be found by calculating
X —C
11m f(x).

X — ¢t

If f is an odd function of x, then f(—x) = —f(x). Given lin%)+ f(x) = 3, then lin%) fx)=—
X — X —

If f is an even function of x, then f(—x) = f(x). Given liné _f(x) = 7 then lim2+ f(x) = 7. However, nothing
X — X — —

can be said about limT f(x) because we don't know lin%+ f(x).
X — — X —

I=0G,5+6) = 5<x<5+6. Also,/x—5<€ = x—5<€ = x <5+ Choose § = €2

= 11m vVx—5=0.

Xﬂd

I=4—-64)=4—-6<x<4 Also,\/41—x<e=>4—x<e>=x>4—¢> Choose§ = ¢€>

= hn}; v4—x=0.
X —

Asx — 07 the number x is always negative. Thus, — (= 1)‘ <€ = | + 1| < € = 0 < e which is always

true independent of the value of x. Hence we can choose any 6 > 0with —§ <x <0 = lim 1 ﬁ =—1.
X —

Since x — 27 we have x > 2 and |x — 2| = x — 2. Then, 1‘ =22 -1 <e= 0<e
which is always true so long as x > 2. Hence we can choose any 6 > 0, and thus 2 < x < 2+ 6

= 1‘ < €. Thus, hm2 x=2 1,

= ]
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(a) li%(J+ |x| = 400. Just observe that if 400 < x < 401, then |x| = 400. Thus if we choose § = 1, we have for any
X —

number € > 0 that 400 < x < 400+ ¢ = ||x| —400| = |400 — 400| =0 < e.

(b) 1i14r[1)07 |x] = 399. Just observe that if 399 < x < 400 then |x| = 399. Thus if we choose § = 1, we have for any
X —

number ¢ > 0 that 400 — 6 < x < 400 = ||x] — 399 = [399 — 399 = 0 < .

(¢) Since lim |x] # lim |x] we conclude that lim |x] does not exist.
X — 400* X — 400~ x — 400

(a) 1in(1)+f(x) = lin%]+ f: f:O; \/§70| <e = —e<y/x<e = 0<x < e forx positive. Choose § = €2
X — X —
= lim f(x)=0.
x — 0" )
(b) lin(l) f(x) = linb _x%sin (1) = 0 by the sandwich theorem since —x* < x*sin (1) < x* for all x # 0.
X — X —
Since [x* — 0| = |—x* — 0] = x? < ¢ whenever |x| < /€, we choose § = /e and obtain |x? sin (1) — 0| < ¢
if —6 <x<0.
(c) The function f has limit 0 at xqg = 0 since both the right-hand and left-hand limits exist and equal O.

CONTINUITY
No, discontinuous at x = 2, not defined at x = 2

No, discontinuous at x = 3,1 = lin})r gx) #gB)=1.5
X —

Continuous on [—1, 3]

No, discontinuous at x = 1, 1.5 = lilq kx) # lin%+ kx)=0
X — X —

(a) Yes (b) Yes, . _l)irzl1+ f(x) =0
(c) Yes (d) Yes

(a) Yes, f(1) =1 (b) Yes, Xli_r’n1 f(x) =2
(c) No (d) No

(a) No (b) No

[=1,00U (0, HU(,2)U(2,3)

f(2) =0,since lim fx)=-2Q2)+4=0= lim f{(x)
X — 2 x — 2%
f(1) should be changed to 2 = lim1 f(x)
X —

Nonremovable discontinuity at x = 1 because lim1 f(x) fails to exist ( 1in}7 f(x) = 1 and lin%+ f(x) = 0).
X — X — X —

Removable discontinuity at x = 0 by assigning the number lim0 f(x) = 0 to be the value of f(0) rather than f(0) = 1.
X —

Nonremovable discontinuity at x = 1 because lim1 f(x) fails to exist ( lin{ _f(x) =2and lin}+ f(x) = 1).
X = X — X —

Removable discontinuity at x = 2 by assigning the number lim2 f(x) = 1 to be the value of f(2) rather than f(2) = 2.
X —
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. Discontinuous only whenx —2 =0 = x =2 14. Discontinuous only when (x +2)2 =0 = x = —2
Discontinuous only when x> —4x4+3=0 = x—-3)x—-1)=0 = x=3o0rx=1

Discontinuous only when x> —3x —10=0 = (x—5)x+2)=0 = x=5o0rx = -2

Continuous everywhere. (|x — 1| + sin x defined for all x; limits exist and are equal to function values.)
Continuous everywhere. (|x| + 1 # 0 for all x; limits exist and are equal to function values.)
Discontinuous only at x = 0

Discontinuous at odd integer multiples o g, e, x=2n—-1) g, n an integer, but continuous at all other x.

Discontinuous when 2x is an integer multiple of 7, i.e., 2X = n7, n an integer = X = “7”, n an integer, but
continuous at all other x.
X

Discontinuous when % is an odd integer multiple of 7—2T, i.e., %" =@@n—1)Z, naninteger = x=2n— 1, nan

integer (i.e., X is an odd integer). Continuous everywhere else.
Discontinuous at odd integer multiples of I, i.e., x = (2n — 1) Z, n an integer, but continuous at all other x.

Continuous everywhere since x* +1 land -1 <sinx <1 = 0<sin?x <1 = 14sin’x 1; limits exist
and are equal to the function values.

3

Discontinuous when 2x +3 < 0 or x < — 3 = continuous on the interval [— 3

2700)'

2
Discontinuous when 3x — 1 < 0 or x < % = continuous on the interval [%, oo) .

Continuous everywhere: (2x — 1)!/3 is defined for all x; limits exist and are equal to function values.

Continuous everywhere: (2 — x)/° is defined for all x; limits exist and are equal to function values.

. . . XZ—X—G_ 3 (X_3)(X+2) — 1 = =
Continuous everywhere since X11313 =0 = thl} - thn3 (x+2)=5=¢g(3)
Discontinuous at x = —2 since _ lim 5 f(x) does not exist while f(—2) = 4.

Xli_r)nw sin (X — sin X) = sin (7 — sin ) = sin (7 — 0) = sin 7 = 0, and function continuous at X = 7.
tliﬁm0 sin (5 cos (tan t)) = sin (5 cos (tan (0))) = sin (3 cos (0)) = sin (3) = 1, and function continuous at t = 0.

lim ‘sec (ysec’y —tan’y — 1) = lim sec (y sec’y —sec’y) = lim ‘sec ((y — Dsec’y) = sec ((1 — 1)sec? 1)
y— y—

y%

= sec 0 = 1, and function continuous aty = 1.

lim0 tan [% cos (sin x1/3)] = tan E cos (sin(O))] = tan (} cos (0)) = tan (%) = 1, and function continuous at x = 0.

X —
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lim cos |—Z2——| =cos | —Z——| =cos -— =cos £ = ﬁ, and function continuous at t = 0.
t— 0 V19 — 3 sec 2t V19 —3sec 0 V16 4 2

s

X— %

lim_ \/cs02x +53tanx = \/cch () +5y/3tan (T) = /4 +5V/3 (%) = /9 = 3, and function continuous at

ng'

g0 = ¥ = CIMED — x4 3 x£3 = g3 = lim (x+3) =6

h(t) = SH310 — (D) — 4 5442 = h(2) = Jlim (t+5)=7

_ -1 (s DG=D _ 4st1 — 1 s+l 3
fs8) == ="%e-n = 31 871 = f(l)_slgnl( s+l )—2

o xX2—16  _ x+Hx-4 _ x+4 — 1; _ 8
gX) = T T e — a1 X7 4 = gd = Xhinél (1) =§

As defined, lir% f(x) =(3)>—1=28and liII:I)) . (2a)(3) = 6a. For f(x) to be continuous we must have
X = X —

6a=8 = a:%‘.

As defined, limzf g(x) = —2 and lim2+ g(x) = b(—2)? = 4b. For g(x) to be continuous we must have
X — — X — —

4b=-2=b=—1.

As defined, lirré _f(x) =12 and lirré ) = a%(2) — 2a = 2a? — 2a. For f(x) to be continuous we must have
X—= X —

12=2a?—-2a = a=3o0ra= —2.

As defined, lim g(x) = g;'l’ = =% and lim g(x) = (0)2 + b = b. For g(x) to be continuous we must have
x—0 + b+1 S
b _ _ _
m—b:>b—00rb—f2
As defined, limlf f(x) = —2 and lim1+ f(x) =a(—1)+ b= —a+b, and limr f(x)=a(l)+b=a+band
X — — X — — X —

lin}+ f(x) = 3. For f(x) to be continuous we must have —2 = —a+banda+b=3= a=32andb =
X —

1
2 2"

As defined, lin%r g(x) = a(0) + 2b = 2b and lir%+ g(x) = (0)> +3a—b = 3a—b, and
X = X —
lirrif g(x) = (2)2 +3a—b=4+3a—band 111%+ g(x) = 3(2) — 5 = 1. For g(x) to be continuous we must
X = X —
have2b =3a—band4+3a—b=1= a=—3andb=—3.

N1 0%}
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47. The function can be extended: f(0) ~ 2.3. 48. The function cannot be extended to be continuous at
x = 0. If f(0) ~ 2.3, it will be continuous from the

right. Or if f(0) = —2.3, it will be continuous from the
left.

y y

2.6 .

10" -1
2'4/ 10" ~ 1 : fy==—"—
/ flx)= X

-0.1 -0.05 0.05 0.1

49. The function cannot be extended to be continuous 50. The function can be extended: f(0) ~ 7.39.
at x = 0. If f(0) = 1, it will be continuous from
the right. Or if f(0) = —1, it will be continuous

from the left.
ll 7.5 f(x):(l-}.zx)llx
0.5 7.3\

-0.5 -0.01 -0.005 0.005 0.01

' sin x
__4 f(x)= W

51. f(x) is continuous on [0, 1] and f(0) < 0, f(1) > 0
= by the Intermediate Value Theorem f(x) takes

on every value between f(0) and f(1) = the
equation f(x) = 0 has at least one solution between
x=0and x = 1.

52. cosx =X = (cosx)—x =0. IfX:—%,cos(—g)—(—g) > 0. Ifx:g,cos(g)—%<0. Thuscosx —x =0

for some x between — g and 5 according to the Intermediate Value Theorem, since the function cos X — X is continuous.

53. Let f(x) = x> — 15x + 1, which is continuous on [—4,4]. Then f(—4) = -3, f(—1) = 15, f(1) = —13, and f(4) = 5.
By the Intermediate Value Theorem, f(x) = 0 for some x in each of the intervals —4 < x < —1, —1 < x < 1, and
1 < x < 4. Thatis, x3 — 15x 4 1 = 0 has three solutions in [—4, 4]. Since a polynomial of degree 3 can have at most 3
solutions, these are the only solutions.

54. Without loss of generality, assume that a < b. Then F(x) = (x — a)? (x — b)? + x is continuous for all values of

X, S0 it is continuous on the interval [a, b]. Moreover F(a) = a and F(b) = b. By the Intermediate Value

Theorem, since a < % < b, there is a number ¢ between a and b such that F(x) = a;b.
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55. Answers may vary. Note that f is continuous for every value of x.
(a) f(0) =10,f(1) =13 —8(1) + 10 = 3. Since 3 < 7 < 10, by the Intermediate Value Theorem, there exists a c
sothat 0 < ¢ < 1 and f(c) = 7.
(b) f(0) = 10, f(—4) = (—4)> — 8(—4) + 10 = —22. Since —22 < _\/§ < 10, by the Intermediate Value
Theorem, there exists a ¢ so that —4 < ¢ < 0 and f(c) = ,\/g_
(c) f(0) = 10, f(1000) = (1000)? — 8(1000) + 10 = 999,992.010. Since 10 < 5,000,000 < 999,992,010, by the
Intermediate Value Theorem, there exists a ¢ so that 0 < ¢ < 1000 and f(c) = 5,000,000.

56. All five statements ask for the same information because of the intermediate value property of continuous functions.
(@) A root of f(x) = x*> — 3x — 1 is a point ¢ where f(c) = 0.

(b) The points where y = x3 crosses y = 3x + 1 have the same y-coordinate, or y = x> = 3x + 1
=fx)=x>-3x—-1=0.

() x3—=3x=1 = x®—3x—1=0. The solutions to the equation are the roots of f(x) = x> — 3x — 1.

(d) The points where y = x> — 3x crosses y = 1 have common y-coordinates, or y = x> — 3x = 1
= fx)=x3-3x—1=0.

(e) The solutions of x3 — 3x — 1 = 0 are those points where f(x) = x® — 3x — 1 has value 0.

sin (X — 2)

x—2

57. Answers may vary. For example, f(x) = is discontinuous at x = 2 because it is not defined there.

However, the discontinuity can be removed because f has a limit (namely 1) as x — 2.

1
x+1

58. Answers may vary. For example, g(x) = has a discontinuity at x = —1 because lim ) g(x) does not exist.
X — —

( lim  g(x) =—ocoand lim g(x)= —1—00.)
x— -1 X — —1%

59. (a) Suppose X is rational = f(xg) = 1. Choose € = % For any 6 > 0 there is an irrational number x (actually
infinitely many) in the interval (xo — 8, X9 + 6) = f(x) = 0. Then 0 < |x — Xq| < 6 but |f(x) — f(x0)|

=1> % =€, SO XILH}( , f(x) fails to exist = fis discontinuous at x, rational.

On the other hand, X irrational = f(xg) = 0 and there is a rational number X in (xg — 0, X + 0) = f(x)
= 1. Again xlin;( f(x) fails to exist = fis discontinuous at xq irrational. That is, f is discontinuous at
— Xo

every point.
(b) fis neither right-continuous nor left-continuous at any point X, because in every interval (xg — 6, X) or
(Xg, X + 0) there exist both rational and irrational real numbers. Thus neither limits . lgr)l( _ f(x) and
0

lim+ f(x) exist by the same arguments used in part (a).
X — Xg

60. Yes. Both f(x) = x and g(x) = x — % are continuous on [0, 1]. However % is undefined at x = % since
fx) 1

g(3)=0= oy 18 discontinuous at x = 3.

61. No. For instance, if f(x) = 0, g(x) = [x], then h(x) = 0 ([x]) = 0 is continuous at x = 0 and g(x) is not.

62. Letf(x) = Xi—l and g(x) = x + 1. Both functions are continuous at x = 0. The composition f o g = f(g(x))
= m = 1 s discontinuous at x = 0, since it is not defined there. Theorem 10 requires that f(x) be

continuous at g(0), which is not the case here since g(0) = 1 and f is undefined at 1.

63. Yes, because of the Intermediate Value Theorem. If f(a) and f(b) did have different signs then f would have to
equal zero at some point between a and b since f is continuous on [a, b].
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64.

65.

66.

67.

68.

69.

71.

73.

75.
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Let f(x) be the new position of point x and let d(x) = f(x) — x. The displacement function d is negative if x is
the left-hand point of the rubber band and positive if x is the right-hand point of the rubber band. By the
Intermediate Value Theorem, d(x) = 0 for some point in between. That is, f(x) = x for some point x, which is
then in its original position.

If f(0) = 0 or f(1) = 1, we are done (i.e.,c = 0 or c = 1 in those cases). Thenletf(0) =a > 0andf(1) =b < 1
because 0 < f(x) < 1. Define g(x) = f(x) —x = gis continuous on [0, 1]. Moreover, g(0) = f(0) —0 =a > 0 and
g(l) =1f(1) -1 =b—1< 0 = by the Intermediate Value Theorem there is a number c in (0, 1) such that

gc)=0 = f(c) —c=0orf(c)=c.

Lete = @ > 0. Since fis continuous at x = ¢ thereisa § > O such that |[x —c| < § = [f(x) — f(c)| < €
= f(c) — e < f(x) < f(c) +e.
If f(c) > 0, then e = § f(c) = 1f(c) < f(x) < 3 f(c) = f(x) > 0 on the interval (c — &, ¢ + &).

Iff(c) < 0, thene = — 1 f(c) = 2f(c) < f(x) < f(c) = f(x) < 0 on the interval (c — 6, ¢ + 6).
y f(c)+e y
c-§ c+s
\T(i‘/ X
- N flc)ve
AN

f(c)-e

By Exercises 52 in Section 2.3, we have lim f(x) =L < lim f(c+h) = L.
Xx=c h—0

Thus, f(x) is continuous at x = ¢ <> lim_f(x) = f(c) < hh—I>nO f(c +h) = f(c).

By Exercise 67, it suffices to show that hlimo sin(c + h) = sin ¢ and hlimo cos(c 4+ h) = cos c.
Now lim sin(c +h) = lim_[(si h inh)] = (sin c) (_lim cos h) (lim sinh)
ow lim sin(c + h) Jim [(sin ¢)(cos h) + (cos c)(sin h)| = (sinc) Jim cosh ) + (cosc) Jim sin
By Example 11 Section 2.2,h1imocos h=1 andhlimosin h = 0. So hlim0 sin(c + h) = sin ¢ and thus f(x) = sin x is
continuous at x = c. Similarly,
I h) = Ii h) — (sin c)(sin h)] = (lim cos h) = (sin )  lim sinh) = cosec.
Jim cos(c + h) Jim [(cos ¢)(cos h) — (sin ¢)(sin h)] = (cos ¢) lim cos (sin ¢) Jim sin cos ¢

— —

Thus, g(x) = cos x is continuous at X = c.

x ~ 1.8794, —1.5321, —0.3473 70. x ~ 1.4516, —0.8547, 0.4030
x ~ 1.7549 72. x = 1.5596

x ~ 3.5156 74. x =~ —3.9058, 3.8392, 0.0667
x ~ 0.7391 76. x ~ —1.8955, 0, 1.8955
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2.6 LIMITS INVOLVING INFINITY; ASMYPTOTES OF GRAPHS

1. (@) lim f(x)=0 (b) lim f(x)= -2
X —2 X — —3+
(©) lim37 f(x) =2 (d) lim3 f(x) = does not exist
X — — X —
(e) Xlg%+ fx) = —1 () Xll%— f(x) = + o0
(2) XthO f(x) = does not exist (h) xILmOO fx)=1

@ |, lim_f(x)=0

2. (&) lim f(x) =2 (b) lim f(x)=-3
X —4 x —2F
© Ilim fx)=1 (d) lim_f(x) = does not exist
X —2 X — 2
(e) lim f(x)= + o0 ®) lim_ f(x)= + o0
x — 3% X — —3
(g) lim_f(x) = + o (h) Ilim f(x) = + o0
Xx— =3 x — 0F
i) lim f(x)= - () lim_f(x) = does not exist
x—0 x—0
k) lim _f(x) =0 @ dim_ f(x) = —1
Note: In these exercises we use the result linil Xn% = 0 whenever T+ > 0. This result follows immediately from
X — o
. . 1 . 1\m/n . 1 m/n
Theorem 8 and the power rule in Theorem 1:  lim (—/) = lim (—) = ( lim _) — o — (.
X — oo X x— foo ‘X X— +oo X
3. (a -3 (b) -3
4. (@ 7 (b) =
5. @ 3 OF
6. () § ®)
7@ -3 ® -3
8. (a) 3 ®) 3

lim S22 — () by the Sandwich Theorem
X = 00 X

10, — L <t < L — , Jim < — 0 by the Sandwich Theorem
— —00

2 sin
. 2—t+sint 1 ) 0—140
1. tLI)mOO t+cost 7t1*1>m30 T+ () = 1+0 1
. r+sinr 1 1+(L'r") 1 140 1
12. r1—1>moo 2r+7—5sinr 7rli>moo 2+%,5(ern‘) *r1_1>m00 2+0-0 2
13. (@) _lim 2% = 1lim 24y _2 (b) 2 (same process as part (a))
: x M 47 T x 2 547 75 5 p p
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14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

29.

30.
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: 2x% +7 _ :
Xleoo x3—x2+x+7 —Xleoo 1-14+3

(a)
(b)

2 (same process as part (a))

xli>moo x2+3

(a)

lim
X — 00

. 7X3 _ .
xli>moo x3 —3x2 + 6x _xll>moo 1—%+

(a)

lim
X — 00

(a)

: 10x° +x* +31
xll>moo x6

(a)

: 9x* 4 x
xll>moo 21 +5x2—x+6 T x =00 2+ 5 -

(a)

(b) % (same process as part (a))

: —2x% —2x+3
X leoo 3x3+3x2—5x

(a)

(b)) — % (same process as part (a))

X — 00

4 . —
lim %9:—1
X—=00 l-y+5+3

\/ lim
X

24T TV 270

. _x _
xll>moo xI—7x34+7x24+9 T

(a)

(b) —1 (same process as part (a))

3
241

25 e T 0-0
. x2—5x  __ . X : X X _ — — —
lemoo X3 +Xx 2_X1l>moo +5-35 7 Xleooler%fx% 1+0*0_\/6_O
2 1
. 2/x+x7! . (12>+(x_2) . 24 4/x .
lim VX lim s =0 28. _lim VX = lim
x =00 3x-7 X = 00 3-1 X500 2—4/x X500
1
. Jx—/x . — x(1/5)=(1/3) . 1*(2’15)
im PR lim G0 = dim =
1+(x2,/15)
. 1 1 . X+ %
lim 2 +; = lim —% =00
X — 00 X X X—=00 1-¢

UPLOADED BY AHMAD JUNDI

(b) 0 (same process as part (a))

(b) 0 (same process as part (a))

(b) 7 (same process as part (a))

(b) 0 (same process as part (a))

(b) 0 (same process as part (a))
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1/15 1 7
. 27— o t
lim — " =0

lim 2B —x1B 7
5+ 3x + Jx T
X — 0 1+ 375 + /10

X 00 x843x4/x

33.

34.

1 3
\[—SX+3_ 23_5+§_ 53
: xLl —o00 2x+x—4 xleoo 24 5 - 3__5\/;
VX+1l g VX1V g VE+HD/x2 VI+H1/x2 140
lim = lim Y/~ = = lim Y —/— Iim Y¥——~ = %Y —~ =1
X =00 x+1 X =00 (x+1)/v/x2 x =00 (x+I)/x T x=0o0 (I+1/x) (1+0)

. <+l 1 VTNV /2 VIHUS  \1+0
x Mo ST = I e T Mt T Mt T e -

36.

37.

39.

41.

43.

45.

46.

47.

49.

51.

52.

53.

lim AP = lim SV o im I o gy B = (0
X = 00\/4x24+25 X — 00/4x2 +25/1/x> (4x2+25)/x2 X — 001/4+25/x? V4+0 2

I 4-3¢ _ (4-3x%)/vx6 i (4-3x%)/(—x) i (—4/x*+3) _ (0+3) 3

J = 6 - _1@ 6 6 _}@ 6 6 l,m 6 -
X 00 4/x6 49 X 00 \/x64+9/v/x X 00 (x6+9)/x6 T x > 00 /1+9/x 1+0

lim 1 _ 00 positive 38 lim 5 _ —00 positive
X — 0+ 3x T positive x50 X - negative
lim 3 — 00 positive 40 lim 1 00 positive
X — 9= X2 - negative . X > 3+ X— -3 positive

2x negative 3x negative
X — —8+ x+8 T o0 ( positive ) 42. X _1} 5= 2x+10 =00 (negauve)
4 _ positive —1 7 negative
x1£n7 x=72 — S (positive) 44. Xh_r,no XZ(X+I) S (posmve -positive
: 2 2 _

(a) XEH})+ 3x1/3 T o) (b) xli{l%), 3)(1 3 o)

a) lim == b) lim 00
@ lim 3 (b) lim &

4 4 : : 1

hm0 =5 = 11_rp0 = o0 48. X11_r>n0 =73 11_r>nO = o0

lim tanx = oo 50. lim secx = o0
= (3 x = (F)
91in(1)7 (1+csch)=—

—

; 1_ifr(1)+ (2 —coth) =

@ lim o= lm o ooy =
(b) lim = lim e =
© lim = lim s =
) lim  Sly= lim e =

= 0

—o0 and hm (2 —coth) =

—00

—0o0

o

00, so the limit does not exist

posmve pOSlthC )
posmve I’ngallVC

(e
( )
J——

negatlve negatlve
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54.

55.

56.

57.

58.

59.

60.

61.

(a)
(b)
()
(d)

(a)
(b)
©

(d)

(a)
(©)
(d)

(a)
(b)
(c)
(d)
(e)

(a)
(b)
()
(d)
(e)

()

(a)

(a)
(©)

UPLOADED BY AHMAD JUNDI

Chapter 2 Limits and Continuity

: _ positive

. E}Iri+ 21 — X li{ri‘*' (x+l)(x D = o0 positive- posmve)
: X _ _ positive

X ll,n%f x2—1 = X quf (x+l)(x 1 — - positive-negative
lim X negative

X — —

: X : X — _ negative
X *I}H,llf x2-1 7 X l}njl, x+Dx-1) — o0 negative-negative

1+ 2—1 = xl}ml'*' (x+l)(x 1) = (posmve negallve)

. 2 .
lim X5—1—0—1— lim L =—-c )
X — 0+ X x — 0+ X negatlve
im £ -Ll=0+ lim L =oo )
X — 0 X X — —X posmve
. 2 2/3 _ _
lim % — =2 — gz =2""-271=0
X — \/E
: x? 11 _ (1Y) _3
im -5 =3 (55) =3
. x2—1 positive . -1 _ positive
x—I}nj% wrd T X (POSiti"e> ®) X —1}n—12* RS (“egaﬁve
: XX=1 _ 13 G+Dhx=1D _ 20 __
xlgr% 2"+4_x£m1+ wid — 2340
: x2—-1 _ -1
X 11{%7 x+4 = 4
. 2-3x4+2 _ 71: x=2)x-1 _ negative-negative
x EI%+ x3—2x2 T X EH%)+ x2(x—2) o0 positive-negative
: X2=3x+2 _ 1 == _ 1 x—1 _ 1
XlLrnZ+ S _)(]LrnZ+ X(x~2) _Xlr%Jr x? _4’X7é2
: x2—3x+2 __ : x=2)x=1) __ : x—1 _ 1
XIE%f —2x? _Xll,r%f X(x—2) _Xll,r%f o T X7 2
. X2=3x+2 _ 1; (X—Z)(X—l) x—1 _ 1
xlﬂnz x3—2x2 T Xlg,nz X2 (x — Xlg,nz o — 40X 72
. x2—3x+2 __ 71: x=2x-D _ _ negative-negative
xlgn() -2 T xlgn() X*(x—2) o0 positive-negative
. x2 73x+2 : x=2)x=1) _ 1 x=D _ 1 _ 1
XEI%Jr —4x X ILI%JF x(x—2)(x+2) XEI%+ x(x+2) 24 8
: X2 =3x+2 _ x=2)x-1 __ x=D _ negative
X _I}H_12+ xX¥—dx T _1}m2+ X(x=2)x+2) hm2+ xxt2) X (negative-positive
: X2=3x+2 _ 1; == _ 1 x=D _ negative
X ]l{r(l)f X3—dx Ty ]l{%— x(x=2)(x+2) T x ll,n}]— x(x+2) o0 (negalive-positive
: X2=3x+2 _ x=2)x-1D _ 1 x=H _ _0 _
xli}l’l’%_ X3 — 4x _x1i> 1+ X(x=2)(x+2) —XEII'i+ x(x+2) — (D3) =0
x—1 __ negative
X E}H;lﬁ x(x+2) -0 (positive'positive)
i x—1_ __ negative
and X ILI%— x(x+2) o0 (negalivepositive)
so the function has no limitas x — 0.
. 3 _ . 37
[le(J+ [2 — [1—3] = —00 (b) tling)* [2 [1’3} =0
. 1 _ ; 1 - _
Jim - [5 +7] = o0 (b) lim [g +7] = —c0
. 1 2 .
iy [ ] - o i, [+ ] o
. 1 2 _ : 1 2 _
(i [x” + <x71>2*3} - @ lim [x“ * <xf1>2'“‘} -
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. 1 1 o . 1 1 —
62. (a) xlgr(l)+ [m— (x,1)4,3:| = 00 (b) lim_ [m—m} = —00
. 1 1 o . 1 1 —_
© lim, | — | = —o0 @ tim [~ gtys] = o0
_ 1 _ 1
63. y= 64. ¥y =7
y

y
|
i _ 1
; “\gx+1
i
x=-1,
T
1
1
1
1
|
!
!

2
_ 22X _9__ _2
68. y={1 =2
_x+3
SIRAETY)
-\
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71. Here is one possibility. 72. Here is one possibility.
y y
| |y =) 4b
i i 3+
S\ N2
o] . * T~ | M
| | -4 -2 Al 2 4

_4 -
75. Here is one possibility. 76. Here is one possibility.
y Y
hy=2, x#0
T 4%@:1_1
x—1
____A~
0 * I 1 e N ¥
4 2 h 4 6
-1 2+
_4 -
77. Yes. If _lim_ ) — 2 then the ratio of the polynomials' leading coefficients is 2, so _ lim ) — 2 as well.
x — 00 gx X — —oo g(x)

78. Yes, it can have a horizontal or oblique asymptote.

o

2®) = L, then the ratio of the polynomials' leading coefficients is L, so

79. At most I horizontal asymptote: If lim

fx)
X l} ~0o gk

, L e I (x+9) — (x+4)
50 xlimoo(v"”‘v”“)* fime [ cH -] [ = din G

0 =0

= lim —>—— =17
X =00 Vx+9++/x+4 x%oo /IJr /144 L+

81. lim_ (\/x2+257¢x2—1): lim_ [\/x2+25f\/x271} {7%235 ﬁ“:ﬂ = lim_ (J%jlg

= L as well.

0

_XHOCm+\/_ X"OO\/H—ﬁ«k\/—_l =

82'xLiIEoo( X2+3+X):xli>nloo|: X2+3+X},{7\/ﬁ+3*x}: lim (2+3) — (<)

243 -x X 00 x24+3—-x
3 3
. /2 —=
= lim_ ——— = lim x =_1l 2 =9 =0
X = =00 /x2+3-x X — =00 1+3 - X — —00 1+3 41 I+1
x2 /2 2
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; 2 _ _ 2 S| . [2x=VAal+3x-2] _ (4x) — (4x> +3x —2)

im (2% VA 3x 2)_ n [ Va2 B = iy, S
3 12 —3x+2 2

X = =00 2x— /42 +43x—2 X — —00 J% 4+% 2 T xS Too \/ﬁ X = —00 _2_m
= 3-0 :—§

—2-2 )

i V9x2 — x — = VOox2 — x — 3x| . [Vox—xa3x]| _ (9x2 —x) - (9¢%)
xll>moo( Ox* —x 3x> = hm { 9x 3x} {m+3x] —XleOC N
— i — _ =1 _ 1
=M, Zoamm — x M m—xlﬂn@o F“ =337 7%

lemm(\/x2+3x—\/x2—2x): lim [\/X2+3X—\/X2—2X}-[L§:§i]— lim w

X2 +3x + X =00 /x243x+ 2x
= lim —(— =
X =00 \/x2+43x+/x2—2x XHOO ,/1+ +4/1

im \/x2+x—\/x2—x= limoo (VXX = Vo x| - [ i Gy
1

X =00 /x2+x+Vx2-x

For any € > 0, take N = 1. Then for all x > N we have that |f(x) — k| = [k —k| =0 < e.
For any € > 0, take N = 1. Then for all y < —N we have that [f(x) — k| = [k — k| =0 < e.

For every real number —B < 0, we must find a § > 0 such that forall x,0 < |[x — 0| < § = ;—} < —B. Now,
~-L<-B<0& 4>B>0& )< & |x|<ﬁ. Chooseézﬁ,then0<\x|<6 = |x|<ﬁ

-1 . 1
= 7 <-Bso thatxlln0 — g = —0o0.

For every real number B > 0, we must find a 6 > 0 such that forall x,0 < [x — 0] < § = ‘ > B. Now,

m>B>0<:>|x|<E.Chooseézﬁ.ThenO<|x—0|<6 :>|x|<§:>m>Bsothat hm0 L= oo0.
X —

[x

For every real number —B < 0, we must find a § > 0 such that forall x,0 < |[x — 3| < § = ﬁ < —B.

Now, z=; < B <0 ¢ 25 >B>0 6 5% <l & (=32 <2 4 0<|zr—3/< /2. Choose
6:\/>then0<|x—3|<6:> 3)2< —B < 0so that hmgﬁ:—oo.

For every real number B > 0, we must find a § > 0 such that forall x, 0 < [x — (=5)| < § = m > B.
Now, g5 >B>0 & x+5* < g & [x+5[< ﬁ Chooseézﬁ. Then 0 < [x — (=5)| < §

1 1 - _
= |X+5|<ﬁ = W>Bsothatxl_1)m = 0.

1
—5 (x+5)?

(a) We say that f(x) approaches infinity as x approaches x; from the left, and write . lin}( _f(x) = oo, if
— Xp

for every positive number B, there exists a corresponding number 6 > 0 such that for all x,
Xg— 60 <X <x9 = f(x)>B.

(b) We say that f(x) approaches minus infinity as x approaches x, from the right, and write hm f(x) = —o0,
X — XO

if for every positive number B (or negative number —B) there exists a corresponding number § > 0 such
that for all x, xg < X < X9+ 6 = f(x) < —B.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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(c) We say that f(x) approaches minus infinity as x approaches x, from the left, and write . lin}( _f(x) = —o0,
— X0

if for every positive number B (or negative number —B) there exists a corresponding number § > 0 such
that for all x, xg — 6 < x < xg = f(Xx) < —B.

94. ForB>0,1 >B>0 & x < g. Choose§ = . Then0 <x <6 = 0<x <y = I>Bsothat lim = oc.

X —

95. ForB>0,1 <-B<0 & —1>B>0« —x<i & —1<x Choosed=2. Then—6 <x<0
j*%<xéi<7Bsothat limifzfoo'
Xx—0" X

96. ForB>0, 25 <-B & — 15 >B & —(x—-2)<§ & x—-2>—4 & x>2— . Choose § = §. Then

2-86<x<2 = —6<x-2<0=> —3<x-2<0=> L5 <-B<Osothat lim -5 =—occ.
x—2" X

97. ForB>0, 25 >B < 0<x—2<32. Choose§ =2. Then2<x<2+6§ = 0<x—2<¢§ = 0<x—-2<2
= X£2>B>Osothatxlin§+ L =

98. ForB>Oand0<x<1,l;>B & l—x2<% & (1—X)(1+X)<%. Now%<1sincex<l. Choose

—x2
14+x

§< g Thenl—8<x<1l= —§<x—1<0=1-x<§<z = 1-01+x)<i(H)<l

= ]%>Bfor0<x<1andxnear1 = lim 15 =o0.
—X X —1- l=x
_ x* 1 _
9. y=Zg=x+1+5 100. y =
y
] 4
6 | 4
| 7
5L 2,4) //y=x+1
I\~
4 ’
k] S e
| 7
2+ ) =’V—2=Jc+1+—1 L
//:y -1 1 —==
[ T R B | x
3 N\ 112 3 4 5
y Fy!
|
% 2 lix=1
/4 |

102.
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UPLOADED BY AHMAD JUNDI
Section 2.6 Limits Involving Infinity; Asymptotes of Graphs 81

103, y=*¥-1=x-1 104, y=5+ =x+ 4

X

105. y = 2= 106. y = ==
y Lo y
=2 : o
5 2 : :
it | ; | =7
Ea— IR |
i -1 i
[
: x=2!
107. y =x*3 4+ 5 108. y = sin (")

109. (a) y — oo (see accompanying graph)
(b) y — oo (see accompanying graph)
(c) cuspsatx = =+ 1 (see accompanying graph)

- %(X %)2/3
110. (@) y — Oandacuspatx =0 (seethe accompanying .
graph) 1
b)) y— % (see accompanying graph)
(c) avertical asymptote at x = 1 and contains the point y=2

(71, ZEW) (see accompanying graph)
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CHAPTER 2 PRACTICE EXERCISES

1. Atx=-—1: Xilr{lr f(x) = xl}r{lﬁ fx) =1

= lim fx)=1=f(—1)
X — —1

= fis continuous atx = —1.
Atx=0: lim f(x)= Ilim f(x)=0 = Ilim f(x)=0.
x—0 x — 0t x—0

But f(0) = 1 # lim f(x)

= fis discontinuous at x = 0.
If we define f(0) = 0, then the discontinuity at x = 0 is

removable.
Atx=1: lim f(x)=—-1and lim f(x)=1
x—1 X — 1t

= lim_ f(x) does not exist
x—1

= fis discontinuous at x = 1.

2. Atx=—-1: Ilim f(x)=0and lim fXx)=—
X — —1 x — —1F

= lim 1 f(x) does not exist

X — —
= fis discontinuous at x = —1.

Atx =0: lim f(x) = —ocoand lim f(x)=
x—0 x — 0F

= lim0 f(x) does not exist
X —

= fis discontinuous at x = 0.

Atx=1: lim fx)= Ilim fx)=1 = Ilim f(x)=1.
x—1 x — 1t X — 1
But f(1) =0 # lim1 f(x)
X —

= fis discontinuous at x = 1.
If we define f(1) = 1, then the discontinuity at x = 1 is
removable.

lim (3f(t)) =3 lim £(t)

t*?tg t*?tg

(®) lim (£(1)° = ( lim £(1 (o749

© lim (1) £(0) = lim £+ lim &) = (-70) =0

0 JL“SO f(t) fim ()

T lim (g0 -7) T

(e) lim cos (g(t)) = cos (tILn}U g(t)) =cos0=1

— 1

=3(-7) =21

_ =1 _
lim7 =1
[

@ lim

t—ty 80O-7

dim g(0) —

M lim |ft|:‘ lim f(t)‘:|—7|:7
t—tp t— 1ty

(g) lim (f(t) +g(t) = lim f(t)+ lim g(t)=-7+0=—7
t— to t—to t—tp

(h) lim

t—1tp

(L)f 11 _ 1
) = Emiy =77 77

G Jim, a0 = Jim e = /3
(b) lim (g(x)-f(x)) = lim g(x)- lim f(x)= (\/5) (1) =
() lim (f(x) +g(x)) = lim f(x) + lim g(x) = L2
@ lim 75 = = =2

V2
2

UPLOADED BY AHMAD JUNDI

0, x<-1
o _Jm 0<lxl<1
Sx) 0 x=1
I, x>1 1k
—- rY
-1 1

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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11.

12.

13.

14.

15.
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Chapter 2 Practice Exercises

(e) Xlgn0 (x +f(x)) = xlgn0 X + xlino f(x) =0+

dim o) fimy cosx L _

(f) lim f(x)-cos x __ %
X — 0 x—1 )}% X — }gn 1 0—

Since lim0 x = 0 we must have that lim (4 — g(x)) = 0. Otherwise, if lim0 (4 — g(x)) is a finite positive
X — X —
number, we would have lin}) ~ {4 g(x)} —oo and hnz)+ {@} = oo so the limit could not equal 1 as
X — X —

x — 0. Similar reasoning holds if lim0 (4 — g(x)) is a finite negative number. We conclude that lirn0 g(x) = 4.
X — X —

2= lim , [x i, g00] = tim x- fim , |Jim, g60] = ¢, i, |, g00] = ~4 Jim, g(0

(since lim_ g(x) is a constant) = lim_ g(x) = %1 = — %
x—0 x—0 -

(@ Jim f(x) = lim x = f(c) for every real number ¢ = f is continuous on (—oo, 00).

() Jim, g(x) = lim, x

(¢) lim h(x) = lim_ x2/3 = 2.1
( L

(d) lim k(x) = lim_ x 6= L —

= g(c) for every nonnegative real number ¢ = g is continuous on [0, 00).

h(
k(

c) for every positive real number ¢ = k is continuous on (0, co)

~~
o
p—
=
mC
[e—
—~
—
|
DO =

)7r, ( ) ) where I = the set of all integers.
() U (nm, (n+ 1)m), where I = the set of all integers.

(c) (—o0, ™) U (m, 00)
(d (—o0, 0)U (0, c0)

(a) 11m0 xsx+_5f7~xj144>( = XliLn0 % = XliLn0 X(X+7) , X # 2; the limit does not exist because
XIL 0~ X(xx_+27) = oo and th%yr xz(x +27) =

(b) lim i = lim) 30T = lim 222 x # 2and lim) 2=t = 565 =0

(a) 11_r>n0 % = hm0 % = X11_r>n0 m = Xlgn0 XQ(X“) ,Xx# 0and x # —1.
Nowthf m = ooandxlin%)+ m =00 = xhl}n0 m = oo.

b)  lim ol = limA Ttrmor = lim X,(X+1),x # 0and x # —1. The limit does not

—oo and hm

exist because lim ——
X > —1t x2(x+ 1)

om, x2(x+1) = 0.

. l—\/; . 1—4/x 1 1
Iim —Y = lim —Y*—~ = lim =5
Xx—1 I=x x—1 (I=VX)(I+vx) X o T+yx 2
. xX—a> _ 1. (x> —a?) _ 11
xhipa xt—at T xlll»na (x2+a2) (x2—a2) — Xtha xZ+a? — 2a2

2 2 2 2 2
lim G&E =X gy &R X oy 1 h) = 2x
h—0 h h—0 h hﬁo( +h

2 _ 2 . 2 2y _ 42 .
lim &= _ jip <X+Zh’+h)x — lim 2x+h)=h
x—0 x—0 x—0

. e 2-Q24x) _
Xhino X Xh_r,no 2x(2+x) hmo 4+2x -

e

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
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Chapter 2 Limits and Continuity
. - . 3 2 —_ .
lim @G+V'=8 _ i, e+ I2x48)-8 (x2+6x+12) =12
x— 0 X x—0 X x — 0
<1/3 1 T (x'3—1) (&P 4x"Pr)(Vx+1) . (x—1(y/x+1) Vx+1
Jim, T = Jim AT @ ey = G e = ()
141 2
T 14141 7 3
. B_16 1 (P-4 (x'P+4) . (x!3—4)(x '/3+4) (P4 ax!B416) (/x +8)
xlin164 Vx—8 _xlgn64 Vx—8 _xlirné4 Vx-8 (\/;+8)(x2/3+4x1,’3+16)
— lm <x 649 (x' +4) (Vx+8) _ (P4 (Vxt8) _ (4+4)8+8) _ 8
X — 64 (x—64)(x2B+4x153+16) — x gq x¥P4+4x13+16 T 16+16+16 T 3
tan2x __ 1: sin2x | cosmX __ q; sin 2x COS TX X 2x) 1.2 _ 2
Xll,no tan 7x —thl’lO cos2x  sinwx Xlino ( 2x )(cost)(sinfrx)(wx) - -1 T T
lim cscx = lim L -
X — T —qr sinx
. . rx . . . e
Xlgn7T sin (5 + smx) = sin (5 + sm7r) = sin (5) =1
lim_cos? (x — tanx) = cos’ (1 — tan7) = cos? (7) = (-1 =1
8x _1; _ 8 _
hmo 3sinx —x Xlgno X _p 7T 3() -1 4
: cos2x—1 _ 1; cos2x—1  cos2x+1\ _ 13 cos?2x—1  __ —sin® 2x _ N —4sinxcos’x _ —4(0)(1)* _
xlgno sinx xlgno ( sin x c052x+1) - Xlgno sinx(cos2x+1) — hmo sinx(cos2x+1) — xlgno cos2x+1 —  1+1 0

1/3
Xlir%+ 4ex)]/?=2 = L linr(l]+ 4 g(x)] =2 = Xlir%+ 4 g(x) = 8, since 2° = 8. Then xlir%+ g(x) = 2.

lim ——-=2= 1lim_G+gx)==% = /5+ lim (x) =
g wram =2 lim o (cre) =4 = VS lim g
3241 . _ . ] ) B
T Xlgn1 g(x)—OsmceXlin1 (3x2+1)=4

5—

li
X _1}1’1’172 \/&,(X

=0 = lim_g(x) = oosince lim2(5—x2):1
- — X — —

lim  *&=1
X — — [x?

Atx = —1: =]

lim f(x) =
X — —1

x(x2—1) .
X =1 xilrzll’
x(x2—1)

x*—1|

limr x = —1, and
X — —

Iim f(x) =

lim 2=D)
X — —1F x— -1+ ~ =1

lim . (—x) = —(—1) = 1. Since

X — —
lim _f() # _lim 00
X — —1 —1*

lim
X — —1*%

= lim f(x) does not exist, the function f cannot be

X — —

extended to a continuous function at x = —1.

Atx=1: Ilim f{(x)=
x—1

x (x2 —
xZ—

lim
Xx—1

x(x2—1)
Ix2—1]|

lim f(x) = lim lim =
x — 17 X — 1" x — 17

cannot be extended to a continuous function at x = 1 either.

i (-

1
5 =

X —

limﬁ g(x) =

L= 5

/

s

X) =

f) =x(® = 1)/Ix* -1

—1, and

lim x =1. Again lim f(x) does not exist so f
X — 1t X —1

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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30. The discontinuity at x = 0 of f(x) = sin (1) is nonremovable because lim0 sin 1 does not exist.
X —

X

31. Yes, f does have a continuous extension to a = 1:

32.

33.

34.

35.

36.

37.

39.

define f(1) = 1im1 Xx—l =4
X —

_4\/} 3°

Yes, g does have a continuous extension to a = 7:
T\ _ 13 Scosf _ _ 5
g (2) = (,lgnw 0—o2r — &

From the graph we see thatt lir%f h(t) # lirré+ h(t)
— t—

so h cannot be extended to a continuous function
ata = 0.

From the graph we see that lim k(x) # lim k(x)
x— 0 x — 0t

so k cannot be extended to a continuous function
ata=0.

(@) f(—1)=—1andf(2) =5 = fhasaroot between —1 and 2 by the Intermediate Value Theorem.

(b), (c) root is 1.32471795724

(a) f(—2) = —2and f(0) =2 = f has a root between —2 and 0 by the Intermediate Value Theorem.

(b), (c) root is —1.76929235424

. 3
lim 243 — pim 2fs — 240 _ 2 38 2043 _ iy 2P 240 _
X — 00DX+7 X —=005+1 540 5 CX 5 —00bx2+T X ==005+ 5 540
. X2 —4x+8 __ : 1 _ 4 8)Y—_0— =
xl}n—loo 3x3 _xlln—loo(Bx 3x2+3x3) =0-0+0=0

-1 1
x -1

fo=F

8(0)

_ 5Scosf 1+
80)= 460 - 27

h(t)

1

—

-1 1

-1
h(t) =1+ DY, a=0

k(x)

2+
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40.

41.

43.

44.

45.

46.

47.

48.
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lemoon—7x+1 :x1l>moo17;+%2 T 1-0+40

: x*—=Tx : =7 _ xt + %3 x+1

M S xl}moo1+% =7 42, lim s = xllmoo12+128 =0

hm siX < lim 4 = Osinceintx — co as x — oo =_ lim_ %X = (.

[x] X — 00 |X] X — 00 |X]

lim ©f=1 < lim 2=0= lim =1 —0.

0 — oo 0 — oo — 00
. sin x

lim x+s1nx+2\/; — lim 1+ + \[ 14040 _ 1

X = 00 X + sin x X = 00 1+S“”‘ 1+0

lim

B xt s 14+ x4 _ 140 _
x—>oox2/3+c052x _XleOO( 1+°“;?3’,‘> CoI+0 1
x2/

2 . 2 . .
(@ y= 3415 undefined atx = 3: lim _**! = —coand lim_ 2! = + oo, thus x = 3 is a vertical asymptote.
X — 3~ X— X_)3+x73
_ xX2—x-2 _ xX>2—x—2 __ X2-x-2 _ 1 .
(b) y= —x2 et is undefined at x = 1: thr Tl = —oo and xllm1+ Tl = — 09 thus x = 1 is a vertical
asymptote.
_ X>4+x—6 : _ AT xX2+x—6 _ x+3 _ 5. 13 X24+x—6 _ 1; X+3 _
(¢) ¥y = 5795 is undefined at x = 2 and —4: thlz Tiax—g — Xthz i 6’x1Lm74* re e 1;111747 3 =0
X2+x—6 _ x+3 _ — _ 43
lem s lim g+ xtd = 00 Thus x 4 is a vertical asymptote.
S dim L2 = dim 2 sl jand lim X = Gim 2ol = Slo C1m li
@ y =77 Jim 77 = lim 57 = F = —land | lim =% = lim_ 357 = 50 = L thusy = —lisa
horizontal asymptote.
4
VX4 VX +4 . 1+ 140 . .
:lim = _lim = =1,th = 1is a horizontal asym .
b) y= vira x W s =M R = Ui , thus y s a horizontal asymptote
/%2 . %2 . 1+ % J110 . 2 . 1+ % . 1+%
(c) y= Y+t im Y14 — qim © — V10 — Jand _lim 44— lim —~ = lim —
X X—00 X X — 00 1 1 X— —00 X X—= =00 73 X — —00 Zx
+iz 1+()
= lim - i =—1, thusy = 1 and y = —1 are horizontal asymptotes.
X ——o0 —1 -
9
_ [x149. / / / 1 X249 +3 _ Ji1+0 _ 1
(d) y= x2 : x—>oo x—»oc - and hm Ox2 +1 _xll>nloo 9+Xl2 —V9+0 T 3

thusy = 5 is a horizontal asymptote.

CHAPTER 2 ADDITIONAL AND ADVANCED EXERCISES

1.

(a)

X | 0.1 0.01 0.001 0.0001 0.00001

X" | 0.7943 0.9550 0.9931 0.9991 0.9999

Apparently, lir%+ x* =1
X —
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(b)
y
1
0.6 .
y=x
0.2
X
0.2 0.6 1
(@ x | 10 100 1000

()™ 03679 03679 0.3679

Apparently, lim (%)1/(]“) =03678 =1
(b)

y

1 1/(1n x)
fo) = (-)

X
0.4

0.2

. . v2 vllng,ﬁi 2
vlirr(lz’L:vliné’Lo\/licszo\/li 2 _LO\/li%’_O

The left-hand limit was needed because the function L is undefined if v > c¢ (the rocket cannot move faster
than the speed of light).

@ |5 -1]<02 5 —02<%-1<02 5 08< <12 = 16</X<24 = 256 <x <576,

®) |5 =1 <01 5 —01< Y =1<01 = 09< <1l = 18</Xx<22 =5 324 <x <4384,

|10 + (t — 70) x 10~% — 10| < 0.0005 = |(t— 70) x 10| < 0.0005 = —0.0005 < (t — 70) x 10~* < 0.0005
= 5<t—-70<5 = 65°<t<75° = Within 5°F.

We want to know in what interval to hold values of h to make V satisfy the inequality

|V —1000| = |367h — 1000| < 10. To find out, we solve the inequality:

|367h — 1000] < 10 = —10 < 367h — 1000 < 10 = 990 < 367h < 1010 = % <h< %

= 8.8 < h < 8.9. where 8.8 was rounded up, to be safe, and 8.9 was rounded down, to be safe.

The interval in which we should hold h is about 8.9 — 8.8 = 0.1 cm wide (1 mm). With stripes 1 mm wide, we can expect
to measure a liter of water with an accuracy of 1%, which is more than enough accuracy for cooking.

Show lim1 f(x) = lim1 (x2—=17) = —6 = f(1).
X — X —
Stepl: [(x2—=7)+6]<e = —e<x*—1<e=l-e<x*<l+e=VI-e<x<1l+e
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Step2: |x—1]<éd = —6<x—1<é6=> —6+1<x<6+1L
Then —§ +1=1/1—cord+1=+/11c Chooseé:mjn{l—\/l—e,\/1+e—1},then

O<|x—1]<é6 = |(x*-7)—6| <eand lim1 f(x) = —6. By the continuity test, f(x) is continuous at x = 1.
X —

. T S 1
8. Show lim, g(x) = lim, 5 =2=g(3).

1
. 1 1 1 1 1
Stepl: |5 —2|<e = —e< £ —2<e = 2-e<3 <2+4€=> 5 >x> .
Step2: |z -1 <6 = —6<x—-1<é = 6+i<x<é+i.
1 _ 1 1 1 _ € 1 _ 1 _ 1 1 _ €
Then =8+ 3 =55 = 0=1 - x93 2 0= 3= w09

44 2¢
Choose 6 =

the smaller of the two values. Then 0 < |x — H <6 = |2lX — 2| < € and 1im1 2Lx =2.

_e
a2+e)
4

. . . . _ 1
By the continuity test, g(x) is continuous at x = .

9. Show lim2 h(x) = lim2 Vv2x—3=1=h().
X — X —
Step 1: ’\/2x—3—1’<6 = —e<V/2x—3-1<e=> l-e</2x-3<1+e = =95 oy o Urs3

Step2: |x—2|<éd = —6<x—2<bor—6+2<x<+2
Then —§ 42— U=943 L §_g_ Q=cfsd _1=0-0 _ & g5 9 Uroies

2 2_ 5
= 6= W —2= % =€+ % Choose 6 = € — %, the smaller of the two values. Then,

0<|x—=2|<é6 = ‘\/ 2x — 3 — 1’ < €, S0 lim2 v/2x — 3 = 1. By the continuity test, h(x) is continuous at x = 2.
X —

10. Show lim_F(x) = lim_+/9 — x = 2 = F(5).
X—9 X—9

Step 1: ]\/9—x—2]<e:—e<\/9—x—2<e:»9—(2—6)2>x>9—(2+e)2.

Step2: 0<|x—5|<d = —6<x—5<6 = —06+5<x<6+5.

Then —64+5=9— (2462 = 6=24+ 62 4= 42006 +5=9-(2—¢) = §=4—(2—¢)> = — 2.
Choose § = €> — 2¢, the smaller of the two values. Then, 0 < |[x — 5| < § = ‘\/9—x—2‘<e,so

Xliin5 \/9? = 2. By the continuity test, F(x) is continuous at x = 5.
11. Suppose L; and L, are two different limits. Without loss of generality assume Ly > L;. Lete = % (Lo — Ly).
Since Xli_}rr%(0 f(x) =L thereisaé; > Osuchthat 0 < [x —xo| < é; = [f{X) —Li| <e = —e<f(x)—L; <e
= —1(@Ly—L)+L; <f(x) <i(Ly—Ly)+L; = 4L; — Ly < 3f(x) < 2L; + L,. Likewise, Jim f(x) = Lo
sothereis a & such that 0 < |[x —xo| < 62 = |[f{X) —Ly| <€ = —e <f(x)— Ly <e¢
= f%(LZ —L)+ Ly <f(x) < %(LZ —Lp)+Ly = 2Ly +L; <3f(x) <4Ly — L4
= L — 4L, < —3f(x) < —2Ly — L;. If § = min {61, 82} both inequalities must hold for 0 < |x — x¢| < 8:

4L, — Ly < 3f(x) < 2L; + Lo
L; — 4L, < —3f(x) < —2Ly — L

a contradiction.

} = 5(L; —Ly) <0< L; —Ls. Thatis,L; — Ly <0OandL; — Ly > 0,

12. Suppose lim_f(x) = L.Ifk =0, then lim_kf(x) = lim 0 =0 = 0- lim f(x) and we are done.
X—C X —C X—C X—C

If k # 0, then given any € > 0, thereisa § > 0sothat 0 < |[x —¢| < § = |f(x) —L| < W= [k||f(x) —L| < e

= [k(f(x) —L)| < ¢ = |(kf(x)) — (KL)| < e. Thus, lim_kf(x) = kL = k(x@c f(x)).
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. (@) Sincex — 0,0<x*<x<1 = (x*-x) > 07 = lim f(x*—x)= ]ir%ff(y):Bwherey:x?’—x.
y*?

x — 0t
(b) Sincex — 07, -1<x<x3<0 = (x3-x) —» 0F = 1in})7f(x3—x): lin}ﬁf(y):Awherey:x?’—x.
X — y—
(© Sincex — 07,0<x'<x*<1 = (x¥*—x') — 0" = lim f(x*-x')= lin}J+ f(y) = A where y = x* — x%.
X — y —

(d) Sincex — 07, -1<x<0 = 0<x'<x*<1 = (X*—x') - 0" = lim f(x>—x')=Aasinpart(c).

x—0

(a) True, because if Xli_r)na (f(x) + g(x)) exists then Xli_Ipa fx) + g(x)) — Xli_r)na f(x) = Xli_r)na [(f(x) + g(x)) — f(x)]

= XliLna g(x) exists, contrary to assumption.

(b) False; for example take f(x) = % and g(x) = — % Then neither limO f(x) nor lim0 g(x) exists, but
X — X —
: — 1 L1y — = i
X@n0 (f(x) + g(x)) = xlino (-1 X15110 0 = 0 exists.
(c) True, because g(x) = |x| is continuous = g(f(x)) = [f(x)| is continuous (it is the composite of continuous
functions).
-1, x<0 . . .
(d) False; for example let f(x) = 1 x>0 = f(x) is discontinuous at x = 0. However |f(x)| = 1 is
continuous at x = 0.
: T =1 _ 1; x+bhx=1 _ _
Showxl_l’m_lf(x)fxl_1>m_1 )(Jrlfxl_l)m_1 aiD - = 2,x # —1.
xX—1 _
Define the continuous extension of f(x) as F(x) = { X 2+1 » X F 11 . We now prove the limit of f(x) asx — —1
_ L X = —

exists and has the correct value.

GO 49 e = —e<(x—DH+2<ex# -1 = —e—1l<x<e—L

Step2: [x— (=D <6d = —d<x+1<6 = -6-1<x<é6-1
Then -6 —1=—€—1 = §=¢cor6—1=€e—1 = §=¢c. Choose 6 =¢. Then0 < |[x — (=1)| < ¢

Step 1:

+1

’f*l—(—2)‘<e = —e<

= ’;:;11 — (72)’ <e = lim . F(x) = —2. Since the conditions of the continuity test are met by F(x), then f(x) has a
X — —
continuous extension to F(x) at x = —1.
; — i x2=2x-3 _ 1 x=3)x+1) _
. Show Xlgn3 g(x) = Xhin3 e = xhin3 a3 = 2, X # 3.

x2—2x-3
Define the continuous extension of g(x) as G(x) = { ) x-6 > % 73 . We now prove the limit of g(x) as

,x=3
x — 3 exists and has the correct value.

x>—2x—-3

Step 1: T

72‘<6é —e< BPED 2 ce 5 —e <M -2<ex#3 = 3-2<x <342

Step2: |x—3]<éd = —6<x—3<éd6=>3-6<x<b6+3.
Then,3 —6=3—2¢ = § =2¢,0r6+3=3+2¢ = § =2¢e. Choose § =2¢. Then0 < |[x —3| < §

— 2‘ <€ = lim3 (x;(i)%)l) = 2. Since the conditions of the continuity test hold for G(x),
X —

g(x) can be continuously extended to G(x) at x = 3.

x2—2x-3

= 2x—6

(a) Lete > 0be given. If x is rational, then f(x) = x = [f(x) — 0| =|x — 0| <€ < |x — 0] < € i.e., choose
6 =¢ Then|x — 0| <8 = [f(x) — 0| < € for x rational. If x is irrational, then f(x) = 0 = |f(x) — 0] < €
< 0 < e which is true no matter how close irrational x is to 0, so again we can choose 6 = €. In either case,
given e > Othereisad = e > Osuchthat0 < [x — 0] < § = |f(x) — 0] < e. Therefore, fis continuous at
x = 0.

(b) Choose x = ¢ > 0. Then within any interval (c — 6, ¢ + ) there are both rational and irrational numbers.

If ¢ is rational, pick € = % No matter how small we choose § > 0 there is an irrational number x in
(c—0b,c+06) = |f(x) —f(c)] = [0 —c| =c > § = e. Thatis, fis not continuous at any rational ¢ > 0. On
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the other hand, suppose c is irrational = f(c) = 0. Again pick ¢ = 5. No matter how small we choose 6 > 0
there is a rational number x in (c — 6,¢ + 6) with [x —¢| < § =€ < § < x < 3. Then [f(x) — f(c)| = [x — 0|
= |x| > § = ¢ = fis not continuous at any irrational ¢ > 0.
_ C . el = . .
If x = ¢ < 0, repeat the argument picking € = 5 = . Therefore f fails to be continuous at any
nonzero value x = c.
(a) Letc = T be arational number in [0, 1] reduced to lowest terms = f(c) = % Pick € = zl—n No matter how

small 6 > 0 is taken, there is an irrational number X in the interval (c — 6,¢ + ) = |f(x) — f(c)| = |0 — %|
= 1> 1 = ¢ Therefore f is discontinuous at x = c, a rational number.

(b) Now suppose c is an irrational number = f(c) = 0. Let e > 0 be given. Notice that % is the only rational
number reduced to lowest terms with denominator 2 and belonging to [0, 1]; % and % the only rationals with
denominator 3 belonging to [0, 1]; 4 and 3 with denominator 4 in [0, 1]; 1, %, 2 and  with denominator 5 in
[0, 1]; etc. In general, choose N so that % < e = there exist only finitely many rationals in [0, 1] having
denominator < N, say ry, g, ... ,T,. Leté =min{|c —r|: i=1,... ,p}. Then the interval (c — 8,c + §)
contains no rational numbers with denominator < N. Thus, 0 < |x —¢| < § = [f(x) — f(c)| = |f(x) — O

= |f(x)] < § < € = fis continuous at x = ¢ irrational.

(c) The graph looks like the markings on a typical ruler Y

when the points (x, f(x)) on the graph of f(x) are !

connected to the x-axis with vertical lines.
0.8
0.6
0.4
0.2

L x
0 0.2 0.4 0.6 0.8 1
Fox) = 1/n  if x'=m/n is a rational number in lowest terms
*) =10  if x is imational

Yes. Let R be the radius of the equator (earth) and suppose at a fixed instant of time we label noon as the
zero point, 0, on the equator = 0 + 7R represents the midnight point (at the same exact time). Suppose X;
is a point on the equator “just after" noon = x; + 7R is simultaneously “just after" midnight. It seems
reasonable that the temperature T at a point just after noon is hotter than it would be at the diametrically
opposite point just after midnight: That is, T(x;) — T(x; + mR) > 0. At exactly the same moment in time
pick xs to be a point just before midnight = x5 + 7R is just before noon. Then T(x3) — T(x2 + 7R) < 0.
Assuming the temperature function T is continuous along the equator (which is reasonable), the Intermediate
Value Theorem says there is a point ¢ between 0 (noon) and 7R (simultaneously midnight) such that

T(c) — T(c + 7R) = 05 i.e., there is always a pair of antipodal points on the earth's equator where the
temperatures are the same.

X—c 4

— 4@ - 1) =2

Jim, 0000 = Jim, £[(600 -+ £00)” — (1) ~ 00)?] = 2 [ (Jim, (509 + £0)) "~ (Jim, () — £)) ]
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0 1 T —1++/1+a _ 1. 1+\/7)< 1+a)
21 (@) Atx=0: lim ry @ = lim =S50 = fim ( =

1 1-(1+a) _ -1 _ 1
= lim, a(-1—Tta)  -1-/it0 2
1-(+a) : —a -1 __

Atx = —1I: aiilzl1+r+(a):ali{11+ a(-l—+/1+a) =, im, a(C1-V1ta)  —1-V0
(b) Atx=0: lim r (@)= _lin 7*1*2{m: lim (*1*“1_“)(’“““)
a—

a— 0" a— 0" a —1++1+4a
= lim =03 — =l = because the
a— 0" a(- 1+\/l+a) a_>0* a(—1+/1+a) 1+\/l+a) a_>()* —1+/1+a 00 (
nominator is al n i lim r_(a)= lim —l——_ h nominator
denominator is always negat Ve),aﬁ0+ (a) Jim oo (because the denominato

is always positive). Therefore, lim0 r_(a) does not exist.
a—

_ 1 : _ : —1-V1+4a _ : -1 _
Atx =1 ailrzl1+r,(a)7ai11111+ a 7a*1>1n,11+ —1+\/m71
(©)
r (a)
1+ r_(a)
~1+J/T+a
0.8 r+(a)=_~ __l_ 1+a
. s‘ a 2 r-(a)—-a*
a a
-1 -0.5 0.5 1 -1 2 4
Graph not to scale -2
-4
(d)
f(x) f(x)
a=0.2 L
1 a=0.1 3?0.5
a=0.05
20
X
-1 .5 1 2=l
j X
fx)=ax*+2x—~1 =Y -30
f@ =axt+2x-1
-20

22. fx) =x4+2cosx = f(0)=0+2cos0=2>0and f(—m) = —7m 4+ 2 cos(—m) = —7 — 2 < 0. Since f(x) is
continuous on [—7r, 0], by the Intermediate Value Theorem, f(x) must take on every value between [—7 — 2, 2].

Thus there is some number ¢ in [—7r, 0] such that f(c) = 0; i.e., c is a solution to X + 2 cos x = 0.

23. (a) The function f is bounded on D if f(x) M and f(x) < N for all x in D. This means M < f(x) < N for all x
in D. Choose B to be max {|M|, |N|}. Then |f(x)| < B. On the other hand, if |f(x)| < B, then
—-B<fx) <B = f(x) —Bandf(x) <B = f(x)isbounded on D with N = B an upper bound and
M = —B a lower bound.

(b) Assume f(x) < N for all x and that L > N. Lete = % Since XILH}([) f(x) = L there is a 6 > 0 such that
0<[x—x|<§ = [fx)—L|<e & L-e<f(x) <L+e e L-EN<f(x) <L+~
& % < f(x) < # ButL >N = % > N = N < f(x) contrary to the boundedness assumption
f(x) < N. This contradiction proves L < N.
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(¢) Assume M < f(x) for all x and that L < M. Lete = M>E. Asin part (b), 0 < [x — x| < §

= L—Mk < f(x) <L+ ML & LM o f(x) < MEE < M, a contradiction.

(@) Ifa b,thena—b 0 = |a—bl=a—b = max{a,b} = %wL@ =abpashb 2,
Ifa<b,thena—b<0 = |a—b|=—(a—b)=b—a = max{ab} =230 B P _atdb ba
__2b _
=3 =b.

(b) Let min{a,b} = 2+b — ‘a;bl :

. _ sin(l—cosx) _ 1. sin(1 — cos x) l—cosx  14cosx _ 1; sin(1 — cos x) . . 1—cos’x _ 1.1 sin? x

Xll_I')IlO - X —XII_IPO 1—cos x X 1+cos x 7X1E>n() 1—cos x Xll_I')IlO x(1+cos x) =1 Xlgno x(1+ cos x)

_ : sin X sin X _ 0y _
- Xlgno X T+cosx L- (5) =0.
: sinx : sinx \/; X 1. 0n 1 R H —1.0.0 —

Jim S = lim S 2os S =1 lim ol Tim (/X =1-0-0=0.

x%O*( \ﬂ) x — 0"

s osin(sinx) _ q.osin(sinX) | sinx T sin(sinx)  q: - sinx —1.1=

xlll)no X - xlgno sin X X xlll)no sin X xlll)no X I-1 L
: 2 : 2 H 2

lim $nCTEX) gy SnGE4Y) 1) = 1im S 4X) 0 jim PN=1-1=1
X — 0 X X — 0 X+ X (X+ ) X — 0 x2+x X—>O(X+ )

s osin(®—4) g osin(x®—4) i SNE—4) g 14—
Xlgnz—x_2 = xlgz o (x+2) thinz e Xlgnz(x—f—Z) =1-4=4

. sin(\[—b’) T sin(\/;—b’) . 1 T sin(\/;—?)) BT 1 _1.1_1
xh~I>n9 x=9 _x1£n9 Vx=3 Vx+3 _xlgn9 Vx=3 xhin‘)\/;*?’ =1 66
Since the highest power of x in the numerator is 1 more than the highest power of x in the denominator, there is an oblique

g p g p q

asymptote. y = % =2x — ﬁ, thus the oblique asymptote is y = 2x.

Asx — ioo,%—>O:>sin(l) —>O:>1—|—sin(%) — 1, thus as x — :I:oo,y:x—kxsin(%):x(l—ksin( )) — X;

1 1
X X

thus the oblique asymptote is y = x.

Asx — 00, x24+1 - x2=V/x24+1— Vx2;as x — —o0, VX2 = —x, and as x — + 00, VV x2 = x; thus the
oblique asymptotes are y = x and y = —X.

Asx — +00,Xx+2 —=x= /x2+2x = /x(x+2) = V/x%; asx — —o00, Vx> = —Xx, and as x — + 00, VX = X;

asymptotes arey = x and y = —X.
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3.1 TANGENTS AND THE DERIVATIVE AT A POINT

1. Pi:my=1,Py: my=35 2. Pi:mp=-2,Py: my=0
3. Pomy = %,PQ: my = —% 4. Pi: my =3,Py: my = -3
[4-(=1+0]-(4-(1? y

5. m= lim ’
h—0

. —_ —_ 2 . —
— lim (1 2l;+h )+1 — lim h(2h h _ 2:
h—0 h—0

at(—1,3): y=34+2(x—(—1)) = y=2x+35,
tangent line

6. m= lim [(A+h—1+1]-[A-1*+1] _ lim
' h—0 h h—0
:hlimoh:O;at(l,l): y=14+40x—-1) = y=1,

h?
D

tangent line

7. m= lim 2/1+h-2V1 _ lim 2¥Ylth=2 2y1+h+?2
' h=0 "  h—0 h 2y/1+h+2

_ sty -4 _ g 2 .
—hh_r)no 2h(\/l+h+1) hlgno Vith+l L
at(1,2): y=2+1x—1) = y =x+ 1, tangent line

1

1
— lim CLmE e gy L=’
8. m = fim, SR = lim S
T —(=2h+h?) . 2-h _ _ ».
*hh_ﬂno h(—1+h)2 *hh_l,no Crhe = %

at (—=1,1) y=1+2x—(=-1)) = y=2x+3,
tangent line
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. _ 3 —(— 3 .
m= lim ¢ 2+h)h =2° _ im —8+12h—h6h2+h3+8 ¥ .
h—0 h—0 y=12x+16 y=x

_ _ 2y _ 19.
= lim (12— 6h +h?) = 12;

at(—2,—-8): y=—-8+4+12(x — (—-2)) = y = 12x + 16,
tangent line

(-2,-8)¢ -8}

1 1
— lim e iy 8- (24D
m = lim S = lim SRS
T —(12h=6h2+h3) _ . 12 — 6h +h?
= Jim =gy = Mmoo
2 _ 3.
T8-8 16
1V, y— _1_ 3
at (—2,—3):y=—1— 2(x—(-2)
= y= —%x— %,tangentline
m= lim @thP+i-5 _ . (Stdhth)os o h@h) oy
h—0 h h—0 h h—o P ’

at(2,5): y —5 = 4(x — 2), tangent line

— 2] — (— . -2 —2h? . —3—
m= lim [+ 2(1h+h)] D iy =2 ;llh W)+ i w — 3
h—0 h—0 h—0
at(1,—1): y+ 1 = —3(x — 1), tangent line
3+h g

_ 1 Gih-2 _ 1 B+h-3h+D _ s )
m= hlgno h - h1£n0 hth+1) hh—I>nO WD 2
at(3,3): y — 3 = —2(x — 3), tangent line

8 __2 2 2

_ een? S 1 8—22+h?% _ 1 8—2(4+4h+h?) _ . —2h(@+h) _ -8 _ _ 5.

m= hlgno T hlgno b2 +h? hlgno h(2 + )2 = hlgno hoih? — 4 = %

at(2,2): y—2=-2(x—-2)

. 3 _ . 2 3\ _ . 2
m= lim 2+h°-8 _ lim (8+12h+6h*+h*) -8 lim h(12+6h+h?) 12:
h—0 h h—0 h h—0 h

at (2,8): y — 8 = 12(t — 2), tangent line

m= lim ' +30+hj-4 o (I+3h+3024+h04+3+3h)—4 g h(6+3h+h?) o
h=0 h h=0 h h=0 h ’
at (1,4): y —4 = 6(t — 1), tangent line

41h-2

4th-2 VAth+2 _ o 4+h -4

— = 1 h — 1
h—0 h h—0 h VA+h+2 T h 50 h(\/4+h+2> n h(\/4+h+2) Va+2
= 1at(4,2): y — 2 = ; (x — 4), tangent line

. Grm+i-3 . 9+ h-3 /9+h+3 . ©+h)—9 . h
m= lim Y>"2" "7 — [im . = lim —2X2=°_ — lim ——
h—0 h h—0 h VO+h+3 T h 0 h(\/9+h+3) h—=0 h(\/9+h+3)

1 .

Jor3 = 6 at(8,3): y—3= % (x — 8), tangent line

5(-14+h?* -5 — lim

sh(=2+h) _
h h—0 h h—0 h

Atx=-1,y=5 = m:hlim0 —10, slope
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—_ - —4 — —_ 2 . -
Atx=2,y=-3 = m= lim W = lim W = lim w = —4, slope
h—0 h—0 h—0
1 1
_ _ 1 S T Gih-1_2 __ 2—(@2+h) _—-h 1
Atx=3,y=35 = m= hlgno = hhin0 o Th) hlin0 haim = 4 slope
(-1 . (h—D+(h+1)
— h+t 2 7 pLLIm ¥ e i U VA _<n
Atx=0,y=-1 = m= l_r>nO o —hh_r)n0 NCES)) —hl_r>n(J h(hH)—Z,slope
[(x+h?+4x+h—1]-(x2+4x—1)

At a horizontal tangent the slopem =0 = 0=m = hhm0 =
—

— Jjm (b)) gy 2R iy (x4 h44) = 2x + 4
h—0 h—0 h—0

2x+4=0 = x=—-2. Thenf(-2) =4 -8 —-1= -5 = (=2, -5) is the point on the graph where there is a
horizontal tangent.

[(x+h)? =3(x+h)]—(x*-3x) _ li (x® 4+ 3x%h + 3xh? + h® — 3x — 3h) — (x* — 3x)
h =, h
h—0

:hlim() M— hm (3x2 +3xh+h>—-3)=3x>-3;3x>~3=0 = x=—lorx = 1. Then

f(—1)=2and f(1) = -2 = (-1, 2) and (1, —2) are the points on the graph where a horizontal tangent exists.

0=m= lim
h—0

1 1
1 — — 1 G+h—1  x—1 x—1)—(x+h-1) . —h _ 1
1_m_hlgno h —h1£“0 h(xX— D(x+h—1) —hlgno M —Dx+h=1) —  x=17
= x—-12=1=x>-2x=0 = x(x-2)=0 = x=0o0rx=2. Ifx=0,theny = —l andm = —1

> y=—1-xx—-0=—-x+1). fx=2,theny=1landm=-1 = y=1—-(x—-2)=—(x—3).

p=m= lim, S \/—_hlgno s gi? hy h(y%h);:/—)
:hILO h(ﬁ+[) = ﬁ Thus,%: ﬁ = y/X=2 = x=4 = y =2. The tangent line is
y=2+3Gx-4=3+1
lim @+h-f® _ }im (100 —4.92 +h)*) — (100 -4.92*) _ lim —4.9 (4+4h +h?) +4.9(4)
h—0 h h—0 h h—o0 h

= hlim0 (—19.6 — 4.9h) = —19.6. The minus sign indicates the object is falling downward at a speed of 19.6 m/sec.

. —f . 2 _ 2 . 2
lim f(lO+h}: 19 _ Jim 3(]0+h)h 307 _ fim 3(20l;1+h) — 60 fi/sec.
h—0 h—0 h—0
. 2 2 2 .
lim w — lim M — im W = lim m(6+h) = 67
h—0 h—0 h—0 h—0
ar 3 _ 41 (93 ar 2 3
lim 124N _ gy ZCEW I FO gy ZIMEENT _ piny 47(12 4 6h + h?) = 167
h—0 h—0 h—0 >
. - . (m(xo+h)+b)—(mxo+b) __ mh _ 1 _

At (x9, mxo + b) the slope of the tangent line is hlgn0 (o Th) =0 _hhino o _hlgn0 m=m

The equation of the tangent line isy — (mxg + b) = m(x — xg) = y = mx +b.

1 1 1
1 _ : G¥n 2 : 4+h7§ . 2yV4+h . 271/4+h)
Atx=d.y= andm = lim 5— = lim, [ b A o (2h\/4+h

7
. — /4 +v4+h| 4. 4—(4+h) T —h
- hllm [ \/7 2+ \/m] 7h1£n0 <2h 4+h(2+\/m>> 7h1£n0 <2h 4+h(2+\/m>)

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI
96 Chapter 3 Differentiation

= lim = =

_1
h—0 (2@(%@)) 2\/1(2+\/71) 16

33. Slope at origin = hlim0 w = lim i .h = lim0 h sin (%) =0 = yes, f(x) does have a tangent at

h— —

the origin with slope 0.

34, lim E0EW =20 _ iy hein()

= lim_sin % Since lim sin % does not exist, f(x) has no tangent at
h—0 h—0

h—0 h h—0 h N
the origin.
35. lim fOHR=IO iy =120 — oo and lim RO = fiy 120 = oo, Therefore,
h—0 h—0 h— 0+ h— 0"
. f0+h)—f(0) _ . .
hhm0 ————— =00 = yes, the graph of f has a vertical tangent at the origin.
—
36. lim YOER=UO = jim %2l = oo and lim ZOHN=UO — jim 1=l =0 = no, the graph of f
h—0 h—0 h — 0% h— 0"

does not have a vertical tangent at (0, 1) because the limit does not exist.

37. (a) The graph appears to have a cusp at x = 0.

(0,0)

. { — 1 . 2/5 _ . .
(b) lim OER=IO = iy b0 = jim L = —coand lim
h— 0" h— 0" h— 0~ h¥ h—0*

= the graph of y = x*/® does not have a vertical tangent at x = 0.

hsi = oo = limit does not exist

38. (a) The graph appears to have a cusp at x = 0.

©.0)]
(b)  lim O+h—f0) _ Jim h’”sh*‘) = lim_ =% = —ooand hlir%+ =% =00 = limit does not exist
— — — — '
= y = x*° does not have a vertical tangent at x = 0.
39. (a) The graph appears to have a vertical tangent at x = 0. Y
_J1/5
(0,0 y=x

A

=00 = y = x'/% has a vertical tangent at x = 0.

(b) lim D=0 _ i
h—0 h 0

h—

h'/5—0 li 1
= 11m gz
h h—>0 h-la
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40. (a) The graph appears to have a vertical tangent at x = 0.

=35

(0,0)

f(0+h)—f(0) _ /% —0

(b) [lim === = lim =2 = lim % =00 = the graph of y = x*° has a vertical tangent at x = 0.
41. (a) The graph appears to have a cusp at x = 0. s
5
y= llxz/5 - 2x
3
X
-1 0 1 2
li [0+ —f0) _ 3 4h*5—2h _ li 4 9 li 4 9 _
R Y e o and, I, e 2=

2/5

= limit does not exist = the graph of y = 4x*/° — 2x does not have a vertical tangent at x = 0.

42. (a) The graph appears to have a cusp at x = 0.

OB _ 5,23

y
0, 0)

(2.0,-4.76)

(b) lim MO+H-10 Jim B —SP — Jim e Jim =5 does not exist = the graph of
— — — — :

y = x°/3 — 5x%/3 does not have a vertical tangent at x = 0.
43. (a) The graph appears to have a vertical tangent at x = 1 y
andacuspatx =0.
2
y=x?3_(x-1)1/3
1
X
-1 0 1 2

. 2/3 _ _1\/3 _ . 2/3 _hw1/3 _
(b) x=1: lim Ut0 (lh+h D=1 im %
h—0

= y=x*% — (x — 1)/3 has a vertical tangent at x = 1;

= —0
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. _ . 2/3 _ _ N3 _(_1\1/3 . _ 1H1/3
x=0 lim w:hm W7 —(h lk)1 0 im h%_%—k%

does not exist = y = x*3 — (x — 1)/ does not have a vertical tangent at x = 0.

44. (a) The graph appears to have vertical tangents at x = 0 and
x =1

/ y=xPra-n'®

1/3 1/3 __1\1/3
(b) x=0: lim O+-10) _ Jim WA DP-CDT — g = y=x3 4 (x— DY hasa
— —

vertical tangent at x = 0;
x=1: lim ML= _ p3y
h—0 h h—0

vertical tangent at x = 1.

1/3 /3 _
(1+h) +(1h+h Dl -0 = y=x"34+(x—1)"3hasa

45. (a) The graph appears to have a vertical tangent at x = 0. y

y=Yixt, x<0
v/x—, x>0
(b) lim MOEFO gy VR0 iy L o
h— 0t x — 0t h—o0 vh
lim  fOEW—O iy VB0 iy oV iy L oo
h— 0" h— 0" h=0- —h " h=0- Vi

= y has a vertical tangent at x = 0.

46. (a) The graph appears to have a cusp at x = 4.

(b) lim W _ g w: lim @:

h— 0* h h— 0* h— 0+
lim Do o VEEGERD o VIR ol
h— 0" h h— 0" h h—0- ~h " h=0- Vbl
= y = v/4 — x does not have a vertical tangent at x = 4.
47-50. Example CAS commands:
Maple:
f:=x->x"3 +2*%x;x0 :=0;
plot( f(x), x=x0-1/2..x0+3, color=black, # part (a)
title="Section 3.1, #47(a)" );
q := unapply( (f(xO+h)-f(x0))/h, h ); # part (b)
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L :=limit( q(h), h=0); # part (c)

sec_lines := seq( f(x0)+q(h)*(x-x0), h=1..3 ); # part (d)

tan_line := f(x0) + L*(x-x0);

plot( [f(x),tan_line,sec_lines], x=x0-1/2..x0+3, color=black,
linestyle=[1,2,5,6,7], title="Section 3.1, #47(d)",
legend=["y=f(x)","Tangent line at x=0","Secant line (h=1)",

"Secant line (h=2)","Secant line (h=3)"] );
Mathematica: (function and value for X0 may change)

Clear[f, m, x, h]

x0 = p;

flx_]: = Cos[x] + 4Sin[2x]

Plot[f[x], {x,x0 — 1,x0 + 3}]

dq[h_]: = (f(x0+h] — f[x0])/h

m = Limit[dg[h],h — 0]

ytan: = f[x0] + m(x — x0)

yl: = f[x0] + dq[1](x — x0)
y2: = {[x0] + dq[2](x — x0)
y3: = {[x0] + dq[3](x — x0)

Plot[{{[x], ytan, y1,y2,y3}, {x,x0 — 1,x0 + 3}]

3.2 THE DERIVATIVE AS A FUNCTION

1. Stepl: f(x)=4—x%and f(x +h) =4 — (x +h)?
. fx+h—fx) _ [A-Gx+h-(@4-x>) _ 4—-x*-2xh—-h*)—4+x> _ _2xh—h®> _ h(=2x—h)
Step2 X 0 X — . — X X X — X

h h h
=—-2x—h
Step 3: f'(x) = hlim0 (=2x —h) = —-2x;{'(=3) = 6,1'(0) = 0, f'(1) = -2

2. Fx)=(x—1+1land Fx+h) =(x+h—-1%+1 = F’(x):hlim0 [("+h—1>2+1}1—[(x—1>2+1]

. 2 2 o _(x2— . 2 _ .
— 1im (x2+2xh+h? —2x 2h-;l+1) (x*—2x+141) lim W — lim (2x4+h—2)
h—0 h—0 h—0

=2(x— 1) F(=1) = -4, F(0) = —2,F(2) =2

. _ 1 _ 1
3. Stepl: g(t) = zand g(t+h) = E
1 1 (12—(1+h)2)
Step 2: &t —g®) _ wen? "2 Wit ) @ (@42 4h?) 2t —h?
p 4 h = h = h = T @rnPeEh  — ({+hZch
_ h(=2t—h) _ —2(—h

T (t+h)2t2h T (t+h)?e?

Step3: g'(h) = lim iy =5 = F:g(-D=2dQ)=-3¢ (\/5) =35

1—(@z+h _ 171)

Lk = 7 k= 0 = K = i ()

—7— —(1— . 2 _ g 2 .
(I-z—-hz—-(Q1 z)(z+h): lim 2=z zh—z—h+z°4+zh _ lim

= 2+ hyzh 2z + h)zh 2_I;1h:1im2_lh
h—0 (z + h)zl h—0 (z +h)zl h— (o 2z+hz h— o 2z+hz

= SR = - LKW =LK (V2) = -

5. Step1: p(d) = /30 and p(d +h) = \/3(0 + h)
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Step 2: RO —p@®) _ \/3(9+h V30 _ (V39+3 \/—) (V30+3h+30) (353
Pe T (Ve va)  n(V3 e v0)

3h _ 3
h(\/39+3h+\/§) /301 3h + /36

. ! I B 3 _ 3 _ 3 . _ 3 — 1 (2y_ _3
Step 3: p(0) = lim | ot = s = v P = 55 PO = 5.0 (5) = 555
6. 1(s) =+/2s+ landr(s+h) = /2 +h) +1 = r’(s):hlimo Vastahtlovastl
—
~ lim (\/25+h+1—\/25+1) . (\/25+2h+1+\/25+1) (@54 2ht 1)— 254 1)
h—0 h (Vaston+t+yvas+1) ho h(v2s+2h+1+y/25+1)
= lim lim 2 2
h—0 h( 2s+2h+ 1+ 25“) hao YT Y \/25+1+\/2s+1 VT
1 1
= SO =LY =L () =&
. 3 _ 9yl . 3 2 2 L 13 _ 9yl
7. y=f(x) =2x*and f(x + h) = 2(x + )} = & = lim ZEW =20 iy ZOCEIChEIR R -2
X h—0 h—0
P P 2 2
:hliino Mﬁh@m :hliino w :h]iino (6x% + 6xh + 2h?) = 6x?
s+h)° —2(s+h)>+3) — (s* =282 +3 . ; 062 Ash—h2 43— _
8 r=s3—224+3 = &= Tim ((s+h)’—2(s+ )h+) (9=2843) _ iy S35+ 3 4 b 25 dsh — W3- 07 = 3
$ — 0 h—0
. —Ash— . h(3?+3sh+h> —4s—h .
= hllmOSSZhMShZ*hhS 4sh hz = h11rn0 (35 +3s +h s=h) 11m0(3s2 +3sh+h? —4s —h) = 3s% — 2s
— —
h d (24( fﬂ)hﬁ) = (557)
— _ t _ t+ s _ 1: t t
9. s=r() = ztyandr(t+h) = by = ¢ = lim 2RI
((l+h)(21+])—1(2t+2h+]))
— lim (2t+2h+ D2+ 1) _ hm (t+h)(2t+ 1) —t2t+2h+ 1)
- h—0 h =0 (2t+2h+ 1)(2t+ Dh
T 2[2+t+2ht+h—212—2ht—t_ 1
*hlgno 2t12h+ D2t+ Dh *hh_ﬂno (2t+2h+1)(2t+1)h hlgno @i+2h+ D2+ D)
_ 1 1
T @FDRirD . @FIP
d [(wh)fih}f(tfl) he 141 (W)
10. & = lim s ~ = lim th  © — Jim L
de h—0 h h—0 h h—0 h
1 h? +h%t+h _ 1; 24+ht+1 _ 241 _ 1
= Jim Scme = im) S = = 1te
1. p=1(q) = cand f(q+h) = o —— = ¥ = lim (Zatier) - (amr)
- P q \/ q Vig+h+1 d 15 h
mwm
= lim YWV iy Vel vathil
h—0 h h—0 hya+h+1/q+1
— m Watfi-vathtl) (Vatlsyathtl) @+D=(q+h+1)
h—0 hyva+h+1/q+1 (Va+1++q+h+1) — 15 h\/q+h+1«/q+ (Va+1++4q+h+1)
_ . _h _ .
_hlino hy/q+h+1/q+1(v/a+1+/q+h+1) _hllno \/q+h+l‘/q+1(\/q+1+\/q+h+l)
_ -1 _ -1
T Va+t1Va+1(Va+l+/aq+1) T 2@+ D/q+1
1 1
12 dz __ lim <\/3<W+h)727 /3w—2) — lim V3w —2—+/3w+3h—
B gy h h—0 h\/3w+3h 23w — 2
i (O RVAR) (ReAe) (3w=2)— Gw+3h—2)
h—0 hy/3w+3h-23w-2 (\/3w—2+ 3w+3h—2) h—0 hy/3w+3h—23w— 2(\/3w 243w+ 3h— z)

_ —3 _ -3
h1—>0 \/3w+3h 23w~ 2(\/3w 2+/3w+3h— 2) o \/3w—2\/3w—2(\/3w—2+\/3w—2)

= 26w-2) \/3w -
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=

_ K+ + o | — [x+2
f(x) = x+ $and f(x + h) = (x + h) + 75 = w _ [ <x+hh)] [x+3]

_ x4 9x - (x+ ) -9+ x®+2x%h+xh? +9x —x® —x*h—9x —%h __ x’h+xh’>—0h

x(x +h)h x(x +h)h ~  x(x+h)h
_ hGx®+xh—=9) _ x2+xh—9 . ¢ T x2+xh—-9 _ x2-9 __ / _
—  x(x+hh T x(x+h) f (X) - hlgno x(x+h ~— ~xz2 1- x2 ; =f ( 3) 0

JES S
2+x+h  2+x

1 / T k(x+h) —kx) _ 1:

k(x) = 5 +X and k(x + h) = T kK'x) = hhm0 = hhjn0 .
_ 2+ -Q+x+h _ —h _ -1 _ -1

hm@ h(2+x)(2+x+h) hlgn() hC+oCtx+h) hlino CHrOC+xth) — CFx2’
KQ2)=— =
d _ lim [(t+h—@+h? - (E-2) lim (8 +3%h 4 3th® + %) — (2 +- 2th + h?) — 3 + ¢
dt h—0 h h—0 h

. 2 2 13 o p2 . 2 2 ne_
= lim 3th3abh=dh-h — iy h(3t +3th;h 2-h) hm (3t + 3th + h?* — 2t — h)

h—0 h—0
__ 242 __ ds _
=3t -2tm=g|_,=5
d e - 1 (Hhﬁ)(l7X)7>(<X+3)>(17X7h) +h+3—x2—xh—3 3+x24+3x+xh+3h
y . 111’1’1 1—(x+h) 1—x — 111’1’1 (1—x—h)(1-x — lim X — X" —Xh — 35X —X — X X X
dx h—0 h h—0 h h—0 h(l*X*h)(l*X)

_ 4 4 _ 4 . dy _ 4 _ 4
—hlgno B —x—h)(1 %) —hllno T xWi—% - & 5 BF 9

__ 8 8
f(x) = 78_2 and f(x 4+ h) = \/(th)_z = f(”hg_“x) = W Vxo2
_ 8 (Vx—2-vx+h-2) _ (Vx=2+Vxh-2) 8{(x—2)— (x+h—2)]
hy/x+h-2y/x-2 (\/x—2+\/m) hy/x+h—2v/x— ( x—24++/x+h— )
_ —8h
_hx/x+h72\/x72(\/x72+x/x+h72) = = hm Vxth—2+/x-2 ( x—2+Vx+h-2)
_ -8 _ —4 ) / _ 1
= mm( — _2) = asm =1'(6) = \[ 5 = the equation of the tangent
lineat(6,4)isy—4———(x—6):>y———X+3+4:>y———x—|-7

, . (1+M)—(1+\/E) . (mfm) ( 4—z—h+ 47z>
g'(z) = lim = lim .
h—0 h h—0 h ( 4—z—h+ 4—2)

= lim @4—-z-h—-(@4- Z) = i —h = lim -1 — -1

ThSo0 h( 4—7—h+ z) n h(\/47th+ 472) h—0 (\/4727}# 471) Wiz’
m=g(3) = 2\/— = — 1 = the equation of the tangent line at (3,2) isw — 2 = — £ (z — 3)

— _ 1 7
:>W——§Z+§+2=>W——§Z+§.

s=f()=1-3Cand ft+h) =1 -3 +h7? =1-3C —6th—3h* = § = lim K=

. (1-32 —6th—3h%) — (1-3) _ . _ ds _
= hlino . = hlin0 (=6t—3h)=—6t = G|_, =6

-+ - (1-4
y=fx)=1-Ltandfx+h)=1- 21 = 4y — Jjm RN iy —( ”h)h (1)

x+h dx h—0 h h—0
1 1
1 X T XrR s 11 dy 1
_hlgno ho hmo x(x+h)h —hlgno GFm - X 7 & i 3
2 2
r =0 andf@ h -2 dr _ gy 0D -FO) oy Aof-h VA6
) = \/ ©+h) = Ji—@im h—0 h h—0 h

— lim 24=0-2y4—0-h _ o 2/4-0-2/1-0-h (ZV‘**H”V“*‘)**‘)
h—0 hV/4-0v4-6-h h—0 h/4-0v4-6-h (2\/479+2\/4797h>
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22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

44—0) —4(4—0-1h) — lim 2
hﬂo 24— 0/ 69— (\/ 0+v4—6— h) h—0 \/470\/479711(\/476“/479711)
1

- (44)(2@) - (4—9>\/m = oo =5

w="f(z)=z++/zandf(z+h) =(z+h) +/z+h = g—jzh@lo e+ -1

RN e

= lim

(z+h+¢7) (V) _ h+\/: hVzrh—yz _

lim

h—0 T h—0 h—0 (Va+h+ )
_ +h—-z ; 1 _ 1 dw _ 5
_1+h1£no h(\/z+ +\[) 1+hh—r>n() Vith+/2 1+2\f T P
/ f(z) — f(x) _ 2127)(12 T (x+2)—(z+2) X — . 1 4
£ _Zlg’n" roX _Zlgnx = _ZI@XW _zlgnx(z x)(z+2)(x+2) - zlE,nX<z+2)(x+2) = xr2p

f'(x) = lim ) =) fyy B34 = (EoHd) oy 2odaodx gy 2ox=deek
7 —'X Z—X 7 —'X zZ—X 7 —'X zZ—X 7 —'X zZ—X

. z—x)(z+x)—3(z—x . (z=x)[(z+x)-3 .
— Z]@X% — Z]gnx% — Z]E)nx[(z + x) — 3] =2x — 13

— i 2@ () g 1T i 28D =x(z=1) g —z4x — -1
g'(x) —Zlﬁ,nxg = = im == = lim o= 5e =5 —Zlinx(z—xxzjn(x—n —Zlﬁnx(z—m(x—n 17
x) = Tim &2 =g _ i VD) -1+ VX) Vim VX VeV = _
g(x)_zlgnxﬁ_zlgnT_ lgnx z—x  \Jz+x z—»xm z—>x\f+\f_7
Note that as x increases, the slope of the tangent line to the curve is first negative, then zero (when x = 0),

then positive = the slope is always increasing which matches (b).

Note that the slope of the tangent line is never negative. For x negative, f}(x) is positive but decreasing as x increases.
When x = 0, the slope of the tangent line to x is 0. For x > 0, f4(x) is positive and increasing. This graph matches (a).

f5(x) is an oscillating function like the cosine. Everywhere that the graph of f3 has a horizontal tangent we expect f} to be
zero, and (d) matches this condition.

The graph matches with (c).

(a) f’isnotdefined atx = 0, 1, 4. At these points, the left-hand and right-hand derivatives do not agree.

For example, § 11)1%7 w = slope of line joining (—4, 0) and (0, 2) = % but . 11}11}J+ w = slope of
line joining (0,2) and (1, —2) = —4. Since these values are not equal, f'(0) = limo w does not exist.
X —

(b)

f'on (-4, 6)

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI
103

Section 3.2 The Derivative as a Function

32. (a) (b) Shift the graph in (a) down 3 units
3
y=fe 3 3 s
1 =
72| ; /;\ 5' . S y=fx)
N A\
4
3.
y
32—0
11 o—0
0.6 1 1 1 1 1
07| 8 o— 87 88
-33F 0—0
34. (a) (b) The fastest is between the 20™ and 30™ days;
slowest is between the 40" and 50" days.
18
16
14+
12+
10} y= %
8 -
6 -
4
2L
IIO 2‘0 3‘0 4‘0 5‘0 !

35. Answers may vary. In each case, draw a tangent line and estimate its slope.

(a) i) slope~ 1.54 = L' ~ 1.54°F

(b)

()

.. ~ dT oF
ii) slope ~ 2.86 = - ~ 2.86°-
iii) slope = 0 = 4L ~ 0° & iv) slope ~ —3.75 = 4f ~ —3.75°F

The tangent with the steepest positive slope appears to occur at t = 6 = 12 p.m. and slope ~ 7.27 = %—T
The tangent with the steepest negative slope appears to occur att = 12 = 6 p.m. and

slope ~ —8.00 = 4T ~ —8.00° =

Slope

9
(°F/hr) 6

A W
2 4 6 8\J0 12

t (hrs)

36. Answers may vary. In each case, draw a tangent line and estimate the slope.

(a) i) slope ~ —20.83 = 4% ~ —20.83
iii) slope ~ —6.25 = O ~ —6.25

1b
month

b
month

b
month

.o ~ d ~
ii) slope ~ —35.00 = 4¥ ~ —35.00

(b) The tangentwith the steepest positive slope appears to occur at t = 2.7 months. and slope ~ 7.27

b
month

dw
= W~ 5313
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t (months)

37. Left-hand derivative: For h < 0, f(0 4+ h) = f(h) = h? (using y = x? curve) =  lim b=l

. 2 _ .
= lim "= lim h=0;
h— 0" h— 0"

Right-hand derivative: Forh > 0, (0 +h) = f(h) = h (using y = x curve) = 1m(1J+ 10+h -0

= lim hh;o = lim 1=1;
h— 0" h—0F
Then lim MO4W -0 ) lirr%) ) MOED-TO = the derivative f'(0) does not exist.
— —

38. Left-hand derivative: Whenh < 0,1+h<1 = f(l+h) =2 = lim “H= = lim 232

:hlirr(er:O;
Right-hand derivative: Whenh > 0,14+h>1 = f(1+h)=2(1+h)=2+2h = hlin%+ -t

2h

= CEN=2 = Jim 2= [im 2=2;
h— 0" h— 0" h— 0"
Then lim W # lim M = the derivative f'(1) does not exist.
h—0 h— 0+

39. Left-hand derivative: Whenh < 0,14+h<1 = f(1+h)=+/1+h =  Jim M-
(\/l+h—1) (\/1+h+1>

. 1+h—1 . (1+h)—1 : 1 1.
= lim Y——= Ilim = 1 —ev= = lim ——— =1
h— 0" h h—0- h ( 1+h+1> h— 0" h(\/1+h+1) h— 0" VI+h+1 2

Right-hand derivative: Whenh >0,14+h>1 = f(1+h)=2(1+h)—1=2h+1 = hlir%+ R -HD)

= lim D=1 = lim 2=2;
h— 0" h— 0"
Then N lir% - w # N lin%)+ M = the derivative f'(1) does not exist.
— —
40. Left-hand derivative: lim =0 = fjm LWL = i 1 =1;
h—0" h— 0~ h—0"
1y 1-(1+h)
Right-hand derivative: lim 0= = iy @ = lim w
h— 0" h— 0" h— 0"
T -h -1 _ _q.
=, im . arm = imo5E =k
Then N lir% %)_“l) #* N lir%+ r(”hh;m) = the derivative f'(1) does not exist.
— —
41. fis not continuous at x = 0 since lim f(x) = does not exist and f(0) = —1
0
X —
42. Left-hand derivative:  lim 02 — i D020 = i 1= 4o
h— 0~ h— 0" h— 0~ h*
Right-hand derivative: lim = £0-£©Q — fjm B0=0 = fim Lo = 4o0;
h— 0" h— 0" h— 0 b
Thenhling)f M = hlin(l]+ M = + oo = the derivative g’(0) does not exist.
— —
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44.

45.

46.

47.

48.

49.

50.

(a)
(b)
(©)

(a)
(b)
(©)
(a)

(b)
©)

(a)
(b)

()

(a)
(b)

©
(a)
(b)
(©

()
(b)

()
(d)

(a)
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The function is differentiable on its domain —3 < x < 2 (it is smooth)
none
none

The function is differentiable on its domain —2 < x < 3 (it is smooth)
none
none

The function is differentiable on —3 < x < 0and 0 < x < 3

none
The function is neither continuous nor differentiable at x = 0 since liII(l) f(x) # lin(1) . f(x)
X — X —

fis differentiableon —2 < x < —1, -1 <x<0,0<x<2,and2 <x <3

f is continuous but not differentiable at x = —1: lim | f(x) = 0 exists but there is a corner at x = —1 since
X — —
lim W = —3and lim wﬁ_“_” =3 = f/(—1) does not exist
h — 0~ h— 0"

f is neither continuous nor differentiable at x = 0 and x = 2:
atx =0, lim f(x)=3but lim f(x) =0 = lim_ f(x) does not exist;
x — 0 X — 0F x—0

at x =2, lim_f(x) exists but lim_f(x) # f(2)
X — 2 X — 2

f is differentiable on —1 < x < 0and 0 < x <2
f is continuous but not differentiable at x = 0: lim0 f(x) = 0 exists but there is a cusp at x = 0, so
X —

£/(0) = lim D=1 gueq not exist
h—0 h

none

fis differentiable on —3 < x < —2, 2 <x<2,and2 <x <3

f is continuous but not differentiable at x = —2 and x = 2: there are corners at those points
none
f/(X) — 1im fx+h) —fx) _ lim —(x+h?—(=x?% — 1im —x*—2xh—h*+x* _ lim (—2x —h) = —2x
h—0 h h—0 h h—0 h h—0
y y'
1 1
y= -x2 y'=-2x
X X
1 -1 1
-1

y' = —2x is positive for x < 0, y’ is zero when x = 0, y’ is negative when x > 0
y = —x? is increasing for —oo < x < 0 and decreasing for 0 < x < oo; the function is increasing on intervals

where y' > 0 and decreasing on intervals where y’ < 0

-1 -1
f'(x) = lim w — lim M — lim Xt&+h =1
h—0 X

1
h—0 h h—0 Xx+hh _h~>0 x(x +h)
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(b)

(¢c) y'is positive for all x # 0,y is never 0, y’ is never negative
d y= —%isincreasingfor—oo <x<0and 0 < x < o0

L/~
%
o
Wty
N—

>

flz) — ) _ lim
Z—X =t z

51. (a) Using the alternate formula for calculating derivatives: f'(x) = Zli_I)le

2’ —x =X @+ x+x)

1 T 1 2Z2rax4+x2 2 / 2
= Nm se=n = Aim, 3@ = Jim TS = s T =X
(b) ,
y y
1+ i+
3 2
=X y=x
=3

(¢) y'ispositive for all x # 0, and y’ = 0 when x = 0; y’ is never negative
d y= %3 is increasing for all x # 0 (the graph is horizontal at x = 0) because y is increasing where y’ > 0; y is

never decreasing

52. (a) Using the alternate form for calculating derivatives: f'(x) = lim =0 _ im
Z— X Z—X 7Z — X Z—X
T A_xt . (z—x) (2 + x>+ %2+ x%) . 22rx?+x%24+x% _ 3 / — 3
= im, iz—x — m, 4z —x) = Jim T =X S () =x

(b)

-1+

(¢) vy is positive for x > 0, y' is zero for x = 0, y’ is negative for x < 0

d y= ’% is increasing on 0 < x < oo and decreasing on —oo < x < 0

2(x +h)?=13(x +h) +5) — (2x2 = 13x + 5) 2x2 4+ 4xh4+2h®> — 13x —13h +5—2x>+ 13x =5

53y = lim, h = pim, h
= lim axh + 207 13h lim (4 +2h — 13) = 4x — 13, slope at x. The slope is —1 when 4x — 13 = —1

= 4x=12 = x=3 = y=2-32-13-3+5= —16. Thus the tangent lineis y + 16 = (—=1)(x — 3)
= y = —x — 13 and the point of tangency is (3, —16).

(5 ) (vi7hevA)

54. For the curve y = y/x, we have y/ = lim xth)—x
y f’ y h—0 h

= lim —————

) (\/x+h+\/§) h—0 (vx-&-h-*—ﬁ)h
= lim m = ﬁ . Suppose (a, \/a) is the point of tangency of such a line and (—1, 0) is the point

h—0
Va0

a—(—=D)  a+1

on the line where it crosses the x-axis. Then the slope of the line is

which must also equal
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3 /a0 Using the derivative formulaatx =a = Y5 = Ja = 2a=a+1 = a= 1. Thus such a line does
1

2
exist: its point of tangency is (1, 1), its slope is N % and an equation of the lineisy — 1 = 3 lx—1

=y=3x+3.
Yes; the derivative of —f is —f’ so that f'(x() exists = —f'(x() exists as well.
Yes; the derivative of 3g is 3g’ so that g'(7) exists = 3g'(7) exists as well.

Yes, hmO EES can exist but it need not equal zero. For example, let g(t) = mt and h(t) = t. Then g(0) = h(0)

=0,but lim &Y — lim ™ — ]im m = m, which need not be zero.
t>0 hO " ¢S50 t T 50

(a) Suppose [f(x)] < x2 for —1 < x < 1. Then [f(0)| < 0> = f(0) = 0. Then f'(0) = Jim fO£h) - 1)

_hhmow_lm W For|h <1,-h?<fhy<h® = —h<™ <h = f(0) = mo%:o

by the Sandwich Theorem for limits.
(b) Note that for x # 0, [f(x)] = |x* sin 1| = [x?| [sin x| < [x?| - 1 = x? (since —1 < sinx < 1). By part (a),
f is differentiable at x = 0 and f'(0) = 0.

The graphs are shown below for h = 1, 0.5, 0.1. The functiony = # is the derivative of the function

y = /X so that ﬁ = lim H VASSLAVERE VNS graphs reveal that y = H VxEho VX gets closer to y = \1/;
as h gets smaller and smaller.
Y y Y
1
h=0.1
h=0.5
2 2. 2
y=UQRJ®) y = UQJ%)
1 1 / 1
/ S Fh-JE
"
X
0 1 2 0 1 2

The graphs are shown below for h = 2, 1, 0.5. The function y = 3x? is the derivative of the function y = x3 so

that 3x? = hlimo W . The graphs reveal that y = % gets closer to y = 3x? as h

gets smaller and smaller.

1 / 1
}__.3,3 y=(x+h)’-x’ \ y=(x+h)’—1’ \

h y =33 " y=3x?

x
1 2 -2 -1 0 1 2 -2 -1 0 1
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61. The graphs are the same. So we know that Y

for f(x) = |x|, we have f'(x) = X 1

X

62. Weierstrass's nowhere differentiable continuous function.

2\' 2\? 2\?
8(x) = cos(nwx) + (3) cos(9mx) + (3) cos(9*rx) + (5) cos(®*nx)

2 7
+eoo 4 (3) cos(9'rx)

63-68. Example CAS commands:
Maple:
fi=x->x"3 +x"2-x;
x0:=1;
plot( f(x), x=x0-5..x0+2, color=black,
title="Section 3.2, #63(a)" );
q := unapply( (f(x+h)-f(x))/h, (x,h) ); #(b)
L :=1limit( q(x,h), h=0 ); #(c)
m :=eval( L, x=x0);
tan_line := f(x0) + m*(x-x0);
plot( [f(x),tan_line], x=x0-2..x0+3, color=black,
linestyle=[1,7], title="Section 3.2 #63(d)",
legend=["y=f(x)","Tangent line at x=1"] );
Xvals := sort( [ x0+2/(-k) $ k=0..5, x0-2*(-k) $ k=0..5]): #(e)
Yvals := map( f, Xvals ):
evalf[4](< convert(Xvals,Matrix) , convert(Yvals,Matrix) >);
plot( L, x=x0-5..x0+3, color=black, title="Section 3.2 #63(f)" );
Mathematica: (functions and x0 may vary) (see section 2.5 re. RealOnly ):
<<Miscellaneous'RealOnly"
Clear[f, m, x, y, h]
x0=m /4;
f[x_]:=x% Cos[x]
Plot[f[x], {x,x0 — 3,x0 + 3}]
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qlx_, h_]:=(f[x + h] — f[x])/h
m[x_J:=Limit[q[x,h], h — 0]
ytan:=f[x0] + m[x0] (x — x0)
Plot[{f[x], ytan},{x, X0 — 3, x0 + 3}]
m[x0 — 1]//N

m[x0 + 1]/N

Plot[{f[x], m[x]},{x, x0 — 3, x0 + 3}]

3.3 DIFFERENTIATION RULES

1.

11.

12.

13.

14.

15.
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y=—x+43 = =4 ()1 4= 2x40=-2r = =2

y=x"+x+8 = Y =x+1+0=2x+1=> &=

s=50-30 = &= d(58) - 4365) = 152 — 15t = & = 4 (15¢2) - 4 (15¢) = 30t — 60

w=232" -7+ 212 = =215 -2172 + 42z = %:12625—422—1—42

y=ix-x = ¥=ax-1 > & =8

y=E 4 o Wyl 14 0=2x 11

w=322-71 = W 6320 o gt o 18 2

s=-2pa? s S oyt =2 -8 o S gt = Y

y:6x2—10X—5X_2:>%:12x—10—|—10x‘3:12x—10+}(—g:> %:12 0-30x1=12-%

Ly=4-2x—xF = ¥o 943t = 2435 Syt =2

r=3s2-3s = $=—2s34 357 =2+ 5 = gg;: sh—5s =23 -3

r=120"" 403 407t = &= 12077 112070 490 = SR 24 o B 0493 48070 420070

=5-8+2

@ y=0@B-x)x-x+1) = y=06-x)-L-x+D)+x-x+1)-L13-x%
=0B-x)B 1)+ (x* —x+1)(=2x) = —5x* + 12x> — 2x — 3

b)) y=—-x>4+43-x2-3x+3 = y = -5x* +12x> - 2x — 3

@ y=02x+3)(5x2 —4x) = y = (2x+3)(10x — 4) + (5x? — 4x) (2) = 30x2 + 14x — 12

(x+5+1)-£x+1)

() y=(2x+3)(5x% —4x) = 10x> + 7x> — 12x = y' =30x> + 14x — 12
@ y=x+1)(x+5+1%) = y=x+1)-L(x+5+1)+
=x+DA-x)+x+5+xH)2x) = (2—1—|—1—

(b) y:x3+5x2+2x—|—5+; = y =3x? +10x+2——

x72) + (2% —|—10x—|—2)_3x2—|—10x—|—2—%
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16. y = (1 +x?) (x3/4 —x7?)

@ v = (1+x2)- (%x*1/4+3x*4) + (- x )(2x) SR PULENE
(b) y = X3/4 _x3 +X11/4 QN y 4Xl4 + b+ 11 7/4+ L
17. y = 243 ; use the quotient rule: u=2x+5andv=3x—-2 = v =2andv' =3 = y = w
_ Bx=2Q-Qx+50) _ 6x—4—6x—15 _ _—19
Gx=27 = T Bx—27 ~ Gx-29
18. y= 34x2+3x :use the quotientrule: u =4 —3xandv=3x>4+x= v = -3andV =6x+1 = y = w
_ () (=3) - (4-30)(6x+1) | —0x% —3x+18x2 —21x—4 _ 9x’—24x—4
o (3x2 +x) B (3x2 +x)* (3x2 +x)*

19. gx) = X+05 ; use the quotient rule: u =x?> —4andv=x+05 = v =2xandVv =1 = ¢Kx) = w

(X+05)(2X)—(X -4A) _ 2x°4x—x*+4 _ +x+4
(x+05)2 = T RE057 T (4057

20. f(t) = =L — =D+l el t#£1= ()= t+2)Q) - (+DA) _ t42-t-1 1

=2 7 (t+2)(t—-1) T t+2° (t+2)? (t+2)% T (t+2)?
1 =1 _ 1—t dv _ (1+)(= 1)*(1*0(20 —1-2—2t4+2¢ _ 2-2t—1
2 v=(1-(1+) " =Lt = & _ T Loaant  fons
_ x45 _ XD -x+5Q) _ 2x-7-2x-10 _ _ —17
2. w=32 = W 2x =77 =TT o T oy
_ s+1) (532) - (Vs-1) (3 _
2. fe) = Lol o gy = VR A0 G) | ety Ly
s+1 (Vs+1) 25 (v5+1) VE(Vs+1)
NOTE: % (\/g) = 2%/; from Example 2 in Section 3.2
24y — il du _ (2\/;)(5)*(5"“)(%) _sx—1
CU=S T & 7Ty = G

25. v= Lix—dyx = v = x(l 7) (1+x=4vA) — /Al

X - x2 x2

26. r:2(ﬁ+\/5> = ¢ = (M—F%):—#—Fef—z

27. y = ey use the quotientrule: u=landv = (x* — 1) (x* +x+ 1) = v’ =0and

V=x-1Dx+D+x+x+1)2x) =2x3 + x> = 2x — 1 + 2x> + 2x® +2x = 4x3 + 3x% — 1

oody w011 a3
dx v -1 (2+x+1)72 (@1 (x2+x+1)?
28 y— XD+ xP43x42 o (K =3x+2)2x+3) - (X’ +3x+2)2x~3) _ _ —6x+12 _ _—6(x’~2)
Y= Gohx-2 T xT-3xt2 y = =2 (x—27 TEDIx-22 T R-12x-27

29. y=ix1-3xX-x=>y=2-3x-1=y' =6x>-3 = y"=12x = yW=12 = y® =0foralln 5

0. y=15X = y=x' =2y =1 = y"'=1x2 = yW=x=y® =1 = yW)=0foralln 6

2

Bly=(x—1)(x*+3x=5)=x*+2x> —=8x+5= y =3 +4x—8= y' =6x+4 = y” = 6= y =0forall
n
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y=(4x+3x)2—x) = —4x* +8x* = 3x> + 6x = y = —16x° + 24x> —6x + 6 = y”" = —48x> +48x — 6
= y" =-96x+48 = yW = —96= y =0foralln 5

y:"sT”:x?—i—%(_1 = g—i:Zx—7x_2 =2x— 5 = gx§:2+l4x_3:2+%

s=CE=l 43 Lo g5l o2 5 S =05t 24203 = 5242 = 24 2

|

— - -4 _ 10
= O 08—t =10

t°

35, = OEDEROED 0l ) Lo f 5 0430 =3t = E s L= 1200 = 12
36. u— (x2+x)(§’7x+1) :x(x+1)(;427x+1) :x(xi:rl) _ xx4 — 142 x = 1+X
= B o0-xt=-3xt=F= =x0=2
3. w=(H2)B-2=Gz"'"+1)B-2=z"'—§+3—z=z"'4}-z2= ¥ =—"2240-1=-2%-1
=Fd-1=> &y :22—3—0=2z—3=§3
38 w=e+Dz-DE@Z+1) =@ -1)ZE+1) =21 = W =43 0=47 = ¥ - 127
2 4 _ 6 __ 42 4 _ _ _ —
39.p:(%)(qq31>:%:%q2_%q2+__Zq4 dp:6q+6q3+q %q+6+]3+q_15
dp _ 1 1 1 1 5
Bkl It L B Ik Sl
40 _ ¢ +3 _ +3 . ¢*4+3 _ ¢+3 1 1 -1
P T oD@ T @3 3D+ (@ +3E+3q+1) 20169  2q(q2+3) 2 24
2
= E=—1q?=-%5 > PB=q?=3
41. u(O):5 u'(0) = =3, v(0) = 71 v/(0) =2

42.

43.

=u(0)V'(0) + v(O)u'(0) =5-2 4+ (—1)(—3) =13

_ V(O)U’(O)*U(O)V’(O) =D(= 3)*(5)(2) 7
(v(0)? (=1)?

— Vll —uV u
®) & (§) =" (v)
_ uOVO —vOW () _ Q= (=D _ 1

(c) % (%) = uv,u;zvu di (I) = 0)? G 25

@ Lav-20=7 -2 = %(7V—2u)|x=0:7v’(0)—2u(0):7-2—2(—3):20

(a) (uv) =uw' +w =

ul)=2,u'(1)=0,v(l) =5,v'(1) = —1
@ S| _ =u@VO)+vDu(D)=2-(-1)+5-0= 2
(b) d_ (_) _ v(Od/'(D)—u()V' (1) _ 5-0-2-(=1) __ 2

x=1 (D)2 =" 62 T
d (v 1
© & (E) =1 () 7 3

_ uvVD—vu'(d) _ 2+(=D=5-0 _
@ Lv-2w|  =wWDH-21)=7-(-1)-2-0=-7

y = x3 — 4x + 1. Note that (2, 1) is on the curve: 1 =23 —4(2) + 1

(a) Slope of the tangent at (x,y) is y’ = 3x> — 4 = slope of the tangent at (2, 1) is y'(2) = 3(2)> — 4 = 8. Thus the slope
of the line perpendicular to the tangent at (2, 1) is — % = the equation of the line perpendicular to the tangent line at
@ Disy—1=-tx-2ory=—%+3.

(b) The slope of the curve at x is m = 3x?> — 4 and the smallest value for mis —4 when x = O andy = 1.
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(c) We want the slope of the curvetobe 8 = y/ =8 =3x> -4=8=3x>=12=x>=4=x= +2. Whenx =2,
y = 1 and the tangent line has equationy — 1 = 8(x —2)ory = 8x — 15; when x = =2,y = (=2)3 — 4(-=2) + 1
= 1, and the tangent line has equationy — 1 = 8(x +2) ory = 8x + 17.

44. (a) y =x3—3x —2 =y = 3x? — 3. For the tangent to be horizontal, weneedm =y =0 = 0 =3x> -3 = 3x> =3
= x = *x 1. Whenx = —1,y = 0 = the tangent line has equation y = 0. The line perpendicular to this line at
(=1,0)isx =—1. Whenx =1,y = —4 = the tangent line has equation y = —4. The line perpendicular to this
line at (1, —4) is x = 1.
(b) The smallest value of y' is —3, and this occurs when x = 0 and y = —2. The tangent to the curve at (0, —2)
has slope —3 = the line perpendicular to the tangent at (0, —2) has slope % = y+2= % (x—=0)or
y = % X — 2 is an equation of the perpendicular line.

_4x dy _ (P+D@-@002x) _ 4x+4-8x2 _ 4(=x*+1) _ _ ;o 40+
45. y = T A = 211 =TSRt T ey Whenx =0,y =0andy = =—— = 4, so the

tangent to the curve at (0, 0) is the line y = 4x. Whenx = 1,y = 2 =y’ = 0, so the tangent to the curve at (1,2) is the

liney = 2.
x2 - X — -
46. y=27 =y = ( *(12(2)4)28(2 ) = © 1+6Z)2 . Whenx=2,y=1landy = (221i(i))2 = — 1, so the tangent
line to the curve at (2, 1) has the equationy — 1 = — % (x—=2),0ory=—35+2.

47. y = ax? 4 bx + ¢ passes through (0,0) = 0 = a(0) +b(0) +¢ = c = 0; y = ax? + bx passes through (1, 2)
= 2 =a+b;y = 2ax + b and since the curve is tangent to y = x at the origin, its slopeis 1 atx = 0
= y =1whenx=0 = 1=2a0)+b = b=1. Thena+b=2 = a=1. Insummarya=b = 1andc=0so
the curve is y = x% + x.

48. y = cx — x? passes through (1,0) = 0=c(1)—1 = c¢=1 = thecurveisy = x — x°. For this curve,
y=1-2xandx=1 = y = —1. Sincey = x — x> and y = x> + ax + b have common tangents at x = 0,
y = x2 + ax + bmust also have slope —latx = 1. Thusy' =2x+a = —1=2-1+a = a= -3
= y = x? — 3x + b. Since this last curve passes through (1,0), we have 0 =1 —3 +b = b = 2. In summary,

a=-3,b=2andc = lsothecurvesarey = x> —3x +2andy = x — x>.

49 y=8x+5=>m=8f(x) =32 —4x > f/(x) =6x — 4 6x —4=8=>x=2=f(2) =3(2)* —4(2) =4 = (2.4)

50. 8x —2y=1=y=4x—3i=>m=4¢gx)=1x* - I+ 1=g'(x) =x>*-3x;x> = 3x =4 =>x=4orx = —1

e =140 3@ +1=-3g-) =11’ 31 +1=-3= (4 -3 or (-1,-3)

X x—2)(1)—x(1 — . — 2
SLy=2x+3=m=2=m =-—py= 2=y = EAUR = o e = L5 4= (x-2)
= +2=x-2=x=4orx=0=ifx=4,y=;5 =2 andifx =0,y = 7% = 0= (4,2) or (0,0).

.= X) = X* = X) =2X;m= X) = =2X=> —F=2X=X"—8=2X*—6Xx=>X"—6x+38 =
52 =5 2 ff 2 £/ Y3 xS x> 2-8 =28 —6x=> X2 —6x +8=0

x—3; X — x—3

S x=4orx=2=f(4) =42 =16,1(2) = 2> =4 = (4, 16) or (2, 4).

53. (@) y=x>—-x = y' =3x>—~ 1. Whenx = —1,y=0andy’ =2 = the tangent line to the curve at (—1,0) is
y=2(x+1Dory=2x+2.
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(b)

=X _X} = X3 —x=2x42 = ¥ -3x-2=(x-2(x+1)>=0 = x=2o0rx = —1. Since

y = 2(2) 4 2 = 6; the other intersection point is (2, 6)

(@ y=x>—6x>+5x = y =3x> -~ 12x +5. Whenx =0,y =0andy =5 = the tangent line to the curve at

(0,0)is y = 5x.
(b)
30
20:
10:
Ry A

3 2

©) yy*_XSX ox +5X} = P62 +5x=5x = xX*—6x2=0 = x2(x—6)=0 = x=0orx = 6.

Since y = 5(6) = 30, the other intersection point is (6, 30).

. 50 _
lim =1 =50x% =50(1)* =50
X—1 X x=1

2/9
lim Xl = 2x77/0 =2 =-%
X—o1 X+l — 09 x=—1 917" 9

g'(x) = 2x =3 X>0,sincegisdifferentiableatx:O:> lim (2x—3)=—3and lim a=a=a= -3
a x <0 X — 0t X—0

f'(x) = a x> _1, since f is differentiable at x = —1 = lim a=aand lim _(2bx) = —2b = a = —2b, and
2bx x < —1 X — —1* X — —1

since fis continuous at x = —1 = lim +(ax+b):—a+bandxlim71 (bx? -3)=b—-3=—-a+b=b-3

X — —1

=a=3=3=-2b=b=-3.
P(x) = a,x" + a,_1x" 1 + -+ + apx? + a;x + ag = P’(x) = na,x"! + (n — 1)a,_1x"2 + -+ + 2apx + &y

R=M?(§ - Y¥) =SM? — L M?, where Cisaconstant = & =CM — M?

Let c be a constant =- %:0 = %(u-c):u-g—i—l-c-g—i:u-O—i-cg—;:cg—i. Thus when one of the

functions is a constant, the Product Rule is just the Constant Multiple Rule = the Constant Multiple Rule is
a special case of the Product Rule.

dv dv
1 v-0— l-a -1

(a) We use the Quotient rule to derive the Reciprocal Rule (with u = 1): % (1) =% = 2 = —

dv
dx *

Tl
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(b) Now, using the Reciprocal Rule and the Product Rule, we'll derive the Quotient Rule: & (¥) = 4 (u- 1)

dx v
dv du
UtV
v2

=u-L (1) 4+ 1.8 ProductRule) =u- () & + L & (Reciprocal Rule) = & (¥) =

v dx dx \v
Vﬂ dv

M the Quotient Rule.

63. (a) %(uvw)z%((uv}w) (uV)dW-I-W (uv)—uvdw—i—w(ug—z—i—vg—i):uv‘é—‘:—l—wu——kwvg—g

=uvw +uv'w + u'vw
(b) 4 (U1UQU3U4) 4 ((U1UQU3) 4) = (u1u2u3) duy +Ll4 (U1UQU3) = 4 (U1UQU3U4)
dx dx dx dx
d d
= ujusug d—x‘ + uy (uluz o —|— uzu; “2 + U3ll2 d‘:j) (using (a) above)
d du
= 3, (uwuguzuy) = upusus dx + ujusuy dx + ujuguy dx + uguzuy G
= u1u2u3u4 + u1u2u3U4 + u1u2u3U4 + u1u2u3U4

(c) Generalizing (a) and (b) above, ddx (ug---u,) = wqug---u,_qu! + wyug--u, U’ _ju, 4 ... +ujuye-u,

—m x™-0—1 (m-x™"! —mx™ ! m—1-2m —m—
64 (™) = & () = S = S e = mxon
65. P= \?Egb vz . We are holding T constant, and a, b, n, R are also constant so their derivatives are zero
P _ (V—nb-0—@RTY(D) _ VO —(an’)(2V) _ _—nRT 2
= = n(V—nb)I; o (v2)? W nnb)2 + \a/l;
m — — 2 — m
66. A(q) = ' +om+ 5 = (km)q ™! +em+ (§)g = G = —(km)q + (3) = —F + § = @ = 2(km)q~* =
3.4 THE DERIVATIVE AS A RATE OF CHANGE
. s=2-3t+2,0<t<2
(a) displacement = As = s(2) — s(0) = 0m — 2m = —2 m, v,, = ﬁf = ’72 = —1 m/sec
b)) v==2=2t-3 = [v(0)| =|-3| =
a= W =2 = a(0) = 2 m/sec? and a(2) = 2 m/sec?
©) v=0=>2t—3=0 = t= g.visnegative in the interval 0 <t < % and v is positive when £ <t < 2 = the body

changes direction at t = %

2. s=6t—t3,0<t<6
(a) displacement = As = s(6) —s(0) =0m, v,, = ﬁf = = = 0 m/sec
(b) v=%=6-2t = [v(0)] = |6 = 6 m/sec and |V(6)| = |—6| = 6 m/sec;

d12 = —2= a(0) = —2 m/sec? and a(6) = —2 m/sec>

() v=0=6—-2t=0 = t= 3. vispositive in the interval 0 < t < 3 and v is negative when 3 < t < 6 = the body
changes direction at t = 3.

a —

3. s=—t2+32-3,0<t<3
(a) displacement =As=53)—s(0)=-9m,v, = % = _Tg —3 m/sec
b) v=%= 3224 6t—-3 = |v(0)] = |-3| =3 m/sec and |[v(3)| = |~ 12| = 12 m/sec; a = ¢ d—2 =—6t+6
= a(O) = 6 m/sec? and a(3) = —12 m/sec?
() v=0= 32+6t—3=0 = t2—2t+1=0 = (t—1)>=0 = t= 1. For all other values of t in the
interval the velocity v is negative (the graph of v = —3t> + 6t — 3 is a parabola with vertex at t = 1 which
opens downward = the body never changes direction).
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4. s:%7t3+t2,0§t§3

(@ As=s53)—s0)=2m,v, =42 ==L =3m/sec

(b) v=1t>—3t2+2t = |v(0)] = 0 m/sec and |v(3)| = 6 m/sec; a = 3t> — 6t +2 = a(0) = 2 m/sec? and
a(3) = 11 m/sec?

© v=0 =t =32 +2t=0 = tt—2)(t—1)=0 = t=0,1,2 = v =1t(t—2)(t — 1)is positive in the interval
for 0 < t < 1 and v is negative for 1 < t < 2 and v is positive for 2 < t < 3 = the body changes direction at
t=1landatt=2.

9

5. s=3%-31<t<5
(@) As=s(5)—s(1)=-20m,v, = =2 = —5m/sec
() v==2+3 = |[v()| =45 m/sec and |[v(5)| = : m/sec;a = 12 — 10 = a(1) = 140 m/sec? and
a(5) = 55 m/sec?

© v=0= # =0= —-50+5t =0 =t =10 = the body does not change direction in the interval

6. s=2,-4<t<0

t+_5 )
(@) As=s(0)—s(—4)=-20m,v,, = — 2 = —5 m/sec
(b) v= ﬁ = |v(—4)| = 25 m/sec and |v(0)| = 1 m/sec; a = (lf;)g = a(—4) = 50 m/sec’ and

a(0) = % m/sec?

—25

(C) v=0 = T52

= 0 = vis never 0 = the body never changes direction
7. s =t3 — 6t> + 9t and let the positive direction be to the right on the s-axis.
(@ v=32—12t+9sothatv=0 = > —4t4+3=(t—-3)(t—1)=0 = t=1or3;a=6t—12 = a(l)
= —6 m/sec? and a(3) = 6 m/sec?. Thus the body is motionless but being accelerated left when t = 1, and
motionless but being accelerated right when t = 3.
(b) a=0=6t—12=0=t=2 withspeed |v(2)| = |12 — 24 + 9| = 3 m/sec
(c) The body moves to the right or forward on 0 <t < 1, and to the left or backward on 1 <t < 2. The
positions are s(0) = 0, s(1) = 4 and s(2) = 2 = total distance = |s(1) — s(0)| + |s(2) — s(1)| = 4| + |-2| = 6 m.

8. v=t—4t+3 = a=2t—4
@ v=0=t?—4t+3=0 = t=1or3 = a(l) = —2 m/sec? and a(3) = 2 m/sec?
b) v>0= (t—3)(t—1)>0 = 0<t< lort> 3 and the body is moving forward; v< 0= (t—3)(t—1) <0
= 1 <t < 3 and the body is moving backward
(c) velocity increasing = a>0 = 2t—4 >0 = t> 2; velocity decreasing = a<0=2t-4<0=>0<t<2

9. s, =1.86t> = v, =3.72tand solving 3.72t = 27.8 = t= 7.5 sec on Mars; s; = 11.44t> = v; = 22.88t and
solving 22.88t = 27.8 = t ~ 1.2 sec on Jupiter.

10. (a) v(t) = s'(t) = 24 — 1.6t m/sec, and a(t) = v/(t) = s (t) = —1.6 m/sec?
(b) Solvev(t) =0 = 24 —-1.6t=0 = t=15sec
(c) s(15) = 24(15) — .8(15)*> = 180 m
(d) Solves(t) =90 = 24t — 82 =90 = t= M ~ 4.39 sec going up and 25.6 sec going down

(e) Twice the time it took to reach its highest point or 30 sec

1. s=15t—1gt? = v=15—gtsothatv=0 = 15— gt=0 = g =12 Therefore g, = 12 = 3 = 0.75 m/sec?
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12. Solvings,, = 832t —2.6t> =0 = (832 —2.6t) =0 = t=0or 320 = 320 sec on the moon; solving
S =832t — 16t2 =0 = t(832—16t) =0 = t=00r52 = 52 sec on the earth. Also, v,, =832 —5.2t=0
= t =160 and s, (160) = 66,560 ft, the height it reaches above the moon's surface; v. = 832 — 32t =0
= t=26and s.(26) = 10,816 ft, the height it reaches above the earth's surface.

13. (a) s=179 — 16t = v = —32t = speed = |v| = 32t ft/sec and a = —32 ft/sec?

(b) s=0 = 179—-162 =0 = t= /2 ~33sec

(¢) Whent= /12 v=-32,/12 = —-8\/179 ~ —107.0 ft/sec

A

., I

14. (a) lim_v= elimﬂ 9.8(sin )t = 9.8t so we expect v = 9.8t m/sec in free fall

|

0
(b) a= % =9.8 m/sec?

15. (a) at2 and 7 seconds (b) between 3 and 6 seconds: 3 <t <6
© (d)
|v] (m/sec) a
_dv
4t T
Speed 3 =0 o—0
3 2k
1L
| P S I S N S . | t
1 L1 L1 ¢ (sec) _(1)_12345678910
of 2 4 6 8 10 >k
-3 | o——0
4}

16. (a) Pis moving to the left when2 <t <3 or5 < t < 6; P is moving to the right when 0 < t < 1; P is standing
stillwhen 1 <t<2or3<t<5

(b) v (cm/sec) speed (cm/sec)
41+ 4 o—o0
velocity
2 —0 2 O—
S—& S—1 t (sec) Ss—- oumm— 1 (sec)
1 2 3 5 i 2 3 5
2k O—
4 Oo—o0
17. (a) 190 ft/sec (b) 2sec
(c) at 8 sec, O ft/sec (d) 10.8 sec, 90 ft/sec

(e) Fromt = 8 until t = 10.8 sec, a total of 2.8 sec
(f) Greatest acceleration happens 2 sec after launch
_ _ . : : . _ v(10.8)—v(2)
(g) Fromt=2tot=10.8 sec; during this period, a = —7—~ ~ —32 ft/sec?
18. (a) Forward: 0 <t < land5 <t < 7;Backward: 1 <t < 5;Speedsup: 1 <t<2and5 <t <6;
Slowsdown: 0 <t< 1,3 <t<5,and6<t<7
(b) Positive: 3 <t < 6; negative: 0 <t<2and6 <t<7; zero: 2<t<3and7<t<9
(c) t=0and2<t<3
d 7<t<9

19. s =490t> = v =980t = a =980
(a) Solving 160 = 490t> = t= % sec. The average velocity was w = 280 cm/sec.
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(b) At the 160 cm mark the balls are falling at v(4/7) = 560 cm/sec. The acceleration at the 160 cm mark
was 980 cm/sec?.

(c) The light was flashing at a rate of % = 29.75 flashes per second.
@ .
100 - ZSK
501 /\ | Ly
1 1 t 5 10 15
_sok 5 1 15 -25
-100 - =50
-150
200
®
751 20 &io—w
S0 1 T I 1
25|/ v=300-37 2 4 g 10 12 14
1 1 1 1 1 I ' 0k
sk 2 4 6 8 10 12 14
50k —40
=75 60
—-100 -
C = position, A = velocity, and B = acceleration. Neither A nor C can be the derivative of B because B's derivative

is constant. Graph C cannot be the derivative of A either, because A has some negative slopes while C has only
positive values. So, C (being the derivative of neither A nor B) must be the graph of position. Curve C has both
positive and negative slopes, so its derivative, the velocity, must be A and not B. That leaves B for acceleration.

C = position, B = velocity, and A = acceleration. Curve C cannot be the derivative of either A or B because
C has only negative values while both A and B have some positive slopes. So, C represents position. Curve C
has no positive slopes, so its derivative, the velocity, must be B. That leaves A for acceleration. Indeed, A is
negative where B has negative slopes and positive where B has positive slopes.

(a) c(100) = 11,000 = c,, = L% = 3110

(b) c(x) = 2000 + 100x — .1x?> = c/(x) = 100 — .2x. Marginal cost = ¢/(x) = the marginal cost of producing 100
machines is ¢/(100) = $80

(c) The cost of producing the 101* machine is ¢(101) — c(100) = 100 — % = $79.90

(a) r(x) =20000 (1 —1) = r'(x) =22 which is marginal revenue.r'(100) = 209 — $2.

1002
(b) r'(101) = $1.96.
(© x1i>moo r'(x) = « lem % = 0. The increase in revenue as the number of items increases without bound

will approach zero.

b(t) = 10° + 10% — 10°%2 = b/(t) = 10* — (2) (10%t) = 103(10 — 20)
(a) b'(0) = 10* bacteria/hr (b) b’(5) = 0 bacteria/hr
(c) Y (10) = —10* bacteria/hr

Q(t) = 200(30 — )2 = 200 (900 — 60t + 2) = Q/(t) = 200(—60 + 2t) = Q'(10) = —8,000 gallons/min is the rate

the water is running at the end of 10 min. Then w = —10,000 gallons/min is the average rate the water flows

during the first 10 min. The negative signs indicate water is leaving the tank.
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2
@ y=6(1-%)"=6(1-t+) = F=p-1
(b) The largest value of % is 0 m/h when t = 12 and the fluid level is falling the slowest at that time. The smallest
value of i—{ is —1 m/h, when t = 0, and the fluid level is falling the fastest at that time.
(c¢) In this situation, % <0 = the graph of y is
always decreasing. As % increases in value,

the slope of the graph of y increases from —1
to 0 over the interval 0 < t < 12.

av

@@ V=3m = ¥ =4’ = §|  =4n(2)? = 167 ft’/ft

(b) Whenr =2, ‘f]—‘r’ = 167 so that when r changes by 1 unit, we expect V to change by approximately 167. Therefore
when r changes by 0.2 units V changes by approximately (167)(0.2) = 3.27 ~ 10.05 ft>. Note that

V(2.2) — V(2) ~ 11.00 ft3.

r=2

200 km/hr = 55 3m/sec = 2 m/sec,and D = P2 = V=2t Thus V=3 = Lt=230 = t=25sec. When
t=25D=4@25"=%"m
v v

s=vot— 16" = v=v)—32;v=0 = t=35:1900 = vot — 16t* so that t = 35 = 1900 = 3} — &

= Vo = /(64)(1900) = 80+/19 ft/sec and, finally, S0L19 . 60sec _ GOmin . _Lmi o 938 mph.

600 - 5=200¢ - 167
400
ds _ _

200 s 200 —32¢

1 1 1 1 1 t

12
./
2001 4 _3p
d?

(a) v=0whent=06.25 sec

(b) v>0when0 <t<6.25 = body moves right (up); v < 0 when 6.25 <t < 12.5 = body moves left (down)

(c) body changes direction at t = 6.25 sec

(d) body speeds up on (6.25, 12.5] and slows down on [0, 6.25)

(e) The body is moving fastest at the endpoints t = 0 and t = 12.5 when it is traveling 200 ft/sec. It's moving slowest at
t = 6.25 when the speed is 0.

(f) When t = 6.25 the body is s = 625 m from the origin and farthest away.
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32.

(a) v=0whent= % sec

(b) v<Owhen0 <t< 1.5 = body moves left (down); v > 0 when 1.5 < t <5 = body moves right (up)

(c) body changes direction at t = % sec

(d) body speeds up on (3, 5] and slows down on [0, 3)

(e) body is moving fastest at t = 5 when the speed = |v(5)| = 7 units/sec; it is moving slowest at t = % when the
speed is 0

(f) When t = 5 the body is s = 12 units from the origin and farthest away.

33.
s
L 2,
10 %=6t—12 %:3:2712”7
5 I /
1 1 1 t
-5
-10 s=r 62+t
+4/1
(a) v=0whent= 6 3 3 sec

§|

(b) V<Owhen%B <t< % = body moves left (down); v > 0 when 0 <t < 673 15 or 6+;/G <t<4

= body moves right (up)
(c) body changes direction at t = %ﬁ
(d) body speeds up on (6%67 2) U (%, 4] and slows down on [07 “T\E) U (2’ _6+3\m) .

N

(e) The body is moving fastest at t = 0 and t = 4 when it is moving 7 units/sec and slowest at t = % sec

(f) Whent= @ the body is at position s &= —6.303 units and farthest from the origin.

s=4-Tr+672- 1

5/\
% =7+ 123

t
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b) v<Owhen0<t< 6_7‘6 or % <t <4 = body is moving left (down); v > 0 when
% <t< HT\E = body is moving right (up)

(c) body changes direction at t = % sec

(d) body speeds up on (@,2) U (6+3—\/B,4} and slows down on [O, G}—ﬁ) U (2, —6+3\/E)

(e) The body is moving fastest at 7 units/sec when t = 0 and t = 4; it is moving slowest and stationary at t = Gi;/B
(f) Whent = % the position is s = 10.303 units and the body is farthest from the origin.

3.5 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

. y=—-10x+3cosx = %:—10+3 (cosx) = —10 — 3 sinx

2. y:%+55inx:> Si—_3+5dx(smx) 23—{-5005)(

3. y=x*cosx = % = x?(—sinx) + 2xcos x = —x?sinx + 2x cos X

4, y:\/gsecx+3:>%:\/gsecxtanerS";C/’i+0—\/_secxtaner;‘ic/5

5. y:cscx—4\/§+7:>g—i:—cscxcotx—Ziﬁ—i—O:—cscxcotx—%

6. y=x’cotx— % = Si =x? & (cotx) +cotx - & (x?) + & = —x? csc? x + (cot X)(2x) + 5
= —x?csc?x +2x cotx + 5

7. f(x) = sinxtanx = f’(x) = sinx sec?x + cosx tanx = sinx sec’x + cos x 22X = sinx(sec’x + 1)

8. g(x) = cscxcotx = g'(x) = csc x(—cse?x) + (—csc xcotx)cot x = —cse’x — cse x cot’x = —csc x(csc?x + cot?x)

9. y =(sec x + tan x)(sec X — tan X) = g—i = (sec x + tan x) % (sec x — tan x) + (sec X — tan x) (% (sec x + tan x)

= (sec X + tan x) (sec X tan x — sec” x) + (sec x — tan x) (sec X tan x + sec? x)

3

= (sec? x tan x + sec x tan? x — sec® x — sec? x tan x) + (sec? x tan x — sec x tan® x + sec® x — tan x sec?x) = 0.

(Note also thaty = sec’x — tan’x = (tan’x + 1) — tan’x = 1 = § = )

10. y = (sin X + cos X) sec X = g_y _(smx+cosx)d (secx)—l—secx ~ (sin X + cos X)

(sin X + cos X) sin X + Cos X — sin X
cos? x cOS X

= (sin X 4 cos x)(sec X tan X) + (sec x)(cos X — sin X) =

_ sin®x4cosxsinx4cos’x—cosxsinx __ 1 2
= 1 =1 —=sec’x
cos?x cos? X

(Note alsothaty =sinxsecx +cosxsecx =tanx+ 1 = g—i = sec? x.)

11 — _cotx dy (1+cotx) £ (cot x) — (cot x) & (1+ cot x) _ (1 + cot x) (—esc? x) — (cot x) (—csc? x)
-y 1 + cot x dx (1 + cot x)? (1 + cot x)2
_ —csc?x—csc?xcotx Fesc?xcotx . —esc’x
- (1 + cot x)2 T (1+cotx)?
12 _ _cosx dy _ (+sin x) & (cos x) — (cos x) & (1+sinx) _ (14sinx) (—sinx) — (cos x) (cos x)
y 1 + sin x dx (1 + sin x)? (1 + sin x)?
_ —sinx—sin’x—cos’x __ —sinx—1 _ —(+sinx) -1
- (1 + sin x)? T (I+sinx)2 T (1+sinx)?2 ~ 1+sinx
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Ly = CO‘;X + mrllx =4secx+cotx = g—i =4 sec x tan X — csc? x
__ cosx X dy __ x(=sinx) — (cos x)(1) (cos x)(1) —x(=sinXx) _ —xsinx —cosx cOs X + X sin x
Y= X + cos X = dx x2 + cos? x - x2 + cos? x

. y=x2sinx+2xcosx —2sinx = % = (x% cos x + (sin X)(2x)) + ((2x)(—sin x) + (cos x)(2)) — 2 cos x

= x2 cos X + 2x sin X — 2x sin X + 2 cos X — 2 c0S X = X CO0s X

. y=x%cosx —2xsinx —2cos X = % = (x%(—sin x) + (cos x)(2x)) — (2x cos x + (sin x)(2)) — 2(—sin x)
= —x%sin X + 2X cos X — 2X cos X — 2 sin x 4+ 2 sin x = —x? sin X
. f(x) = X}sinx cos x = '(x) = x*sinx(—sinx) + x3cos x(cos x) + 3x?sinx cos x = —x’sin?x + x>cos*x + 3x>sin x cos x

. g(x) = (2 — x)tan’x = g'(x) = (2 — x)(2tanx sec’x) + (—1)tan’x = 2(2 — x)tan x sec’x — tan’x
2

= 2(2 — x)tan x( sec’x — tanx)
_ ds __ 2 __ 2 ds __

.s=tant—t = G =sec’t—1 20. s=t"—sect+1 = {H =2t—secttant

s = 14csct = ds _ (I —csct)(—csctcott)—(1+csct)(csctcott)
: T l—csct dt — (1 —csct)?

__ —cscteott+csc’tcott—csctcott—csc®teott _ —2csctcott

- (1 —csct)? T (I—csct)?

g— —sint  _ ds__ (I-cosncos—(sint)siny) _ cost—cos’t—sin®t _ _cost—1 __ _ 1 _ 1
' T 1-—cost de (1 —cost)? - (1 —cos t)2 T (I—cost? l—cost ~ cost—1

.r=4—-60>sinf = %:—(02%(sin9)+(sin9)(20)) = — (62 cos 0 + 20 sin §) = —0(0 cos O + 2 sin 0)

.r=0sinf +cosf = %:(00050+(sin0)(1))fsin0:00050

.r=seclcscld = % = (sec #)(—csc 6 cot 0) + (csc O)(sec A tan 0)

= (c;sl0) (sirllﬁ) (%) + (sirllﬁ) (cr}sﬁ) (2:;1_999) = si;zlf) + coizl‘) = 56029 - CSC20

.r=(1+secH)sinf = % = (1 + sec 8) cos 0 + (sin A)(sec 6 tan #) = (cos 8 + 1) + tan® # = cos 8 + sec?

.p=5+-Lt =5+tanq = g—gzseczq

cotq
.p=({+cscq)cosq = g—z = (1 4 csc q)(—sin q) + (cos q)(—csc q cot q) = (—sinq — 1) — cot> ¢ = —sin q — csc?q

__ sing4cosq = dp __ (cos g)(cos q —sin ) — (sin g + cos g)(=sin q)

- P= cos q dq cos?q
_ cos’q—cosqsinq+sin’qtcosgsing 1 __ 2
- cos? q T cos?q secq
ang - _, dp __ (I+tang)(sec®q) —(tan q) (sec’q) _ sec’q+tangsec’q—tangsec’q _ _ sec’q
P 1+tanq dq — (1 + tan q)? - (1 + tan q)? (1 +tanq)?

__ gsing - dp _ (4*—1)(qeosq+sing(1)) — (gsing)(2q) _ q*cosq+q’sing —qcosq —sing — 2¢*sing

PT e T a T @17 @17
_ q’cosq—qg’sing—qcosq—sing
(@ - 1)°
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3. p= 3q+tang dp _ (qsecq) (3 + sec’q) — (3q + tanq)(qsecqtanq + secq(1))

qsecq dq (qsecq)?
_ 3qsecq+qsec’q— (3q2secqtanq+3qsecq+qsecqtan2q+secqtanq) gsec3q— 3q’secqtanq — qqecqtan q—secqtanq
(qsecq)® (qsecq)®
33. (@) y=cscx = y = —cscxcotx = y” = —((csc x) (—csc? x) + (cot x)(—csc x cot X)) = csc® x + csc x cot? x

= (csc x) (esc? x + cot? x) = (esc x) (esc?x + esc? x — 1) = 2 esc® x — esc x
(b) y=secx = y =secxtanx = y” = (sec x) (sec? x) + (tan x)(sec x tan x) = sec® x + sec x tan® x
= (sec x) (sec? x + tan® x) = (sec x) (sec?x + sec® x — 1) = 2 sec® x — sec x

34. (a) y=-2sinx = y = —2cosx = y’' = —2(—sinx) =2sinx = y” =2cosx = y* = —2sinx
(b) y=9cosx = y = -9sinx = y" = -9cosx = y” = —9(—sinx) =9sinx = y® =9cosx

35. y=sinx = y =cosx = slope of tangent at
X = —mis y/(—m) = cos (—m) = —1; slope of
tangent at x = 0 is y’(0) = cos (0) = 1; and y=-x-m
slope of tangent at x = 3 isy’ (3F) = cos I

—371"/2 -7 —71"/2 71"/2 71"/2 2
= 0. The tangent at (—7r7 0)isy—0=—-1(x+m), \4 y;lA(WZ’,f
ory = —x — m; the tangent at (0, 0) is

y —0 = 1(x — 0), or y = x; and the tangent at
(37”,— )isy: —1.

36. y=tanx = y' =sec’x = slope of tangent at x = —

W

is sec? (— §) = 4; slope of tangent at x = 0 is sec” (0) = 1; y= 4x+——\/—

and slope of tangent at x = 7 is sec? (§) = 4. The tangent , / @AL' .
at (= (= 5)) = (= 5.-V3) sy + V3=4(x +9); i

the tangent at (0, 0) is y = x; and the tangent at (5, tan (5))

= (%,\/g) isy— 324(X— %) 2 (777/3‘7\/3)72/ y=4xf4?‘”+‘/§

y=tanx

[SIE]

37. y=secx = y =secxtanx = slope of tangent at
x =—Tissec (—5) tan (— §) = —21/3; slope of tangent

(=3

c(f)tan (%) = /2. The tangent at the point
(= 5sec(=3) = (-5.2) sy —2=-2V3 (x +5):
the tangent at the point (%, sec (7)) = (%, \/5) isy — /2
VA9,

atx =7 IS N ¢

—71'/2 —7/3 0 4 /2

38. y=1+4+cosx = y = —sinx = slope of tangent at

X = — 3 is —sin (— %) = ﬁ ; slope of tangent at x = 37”

is —sin (3F) = 1. The tangent at the point

(—571+COS( 3))=(52)

isy—35 = (x %) ; the tangent at the point
3
2

(gﬂl—l—cos( )) (77 )1sy—l:x—377r

39. Yes,y =x+sinx = y =1+ cos x; horizontal tangent occurs where 1 +cosx =0 = cosx=—1 = x =7
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. No,y =2x+sinx = y’ = 2+ cos x; horizontal tangent occurs where 2 + cos x = 0 = cos x = —2. But there
are no x-values for which cos x = —2.

. No,y =x —cotx = y = 1+ csc?x; horizontal tangent occurs where 1 + csc>x = 0 = csc?x = —1. But there
are no x-values for which csc? x = —1.

. Yes,y=x+2cosx = y = 1— 2 sinx; horizontal tangent occurs where | —2sinx =0 = [ =2sinx
1 St

— Q1 T —

= 5 =sinx = x=gorx ==

. We want all points on the curve where the tangent

line has slope 2. Thus,y = tan x = y’ = sec’x so '

thaty =2 = sec?x =2 = secx = +1/2 :

= x = =+ 7. Then the tangent line at (F,1) has . y=2r-T+1
/.

equationy — 1 = 2 (x — ) ; the tangent line at o
(—%,—1) hasequationy + 1 =2 (x + ) . y=2:x+7—27—1

. We want all points on the curve y = cot x where
the tangent line has slope —1. Thus y = cot x
2+ y=cotx

= y = —csc?xsothaty = -1 = —csc?x = —1
= csc’x=1 = cscx=+1 = x=75. The L

y=—x+a/2 !

tangent line at (3,0) isy = —x + J.

(12, 0)

.y=4+cotx—2cscx = y = —csc’x+2cscxcotx = — (mllx) (%)
(a) Whenx = %, then y = —1; the tangent line isy = —x + % + 2.
(b) To find the location of the horizontal tangent sety’ =0 = 1 —2cosx =0 = x = % radians. When x = %,

theny =4 — \/g is the horizontal tangent.

. y:1+\/§cscx—|—cotx = y/:—\/ECSCXCOtX—CSC2X:_(sirllx) (%)

(a) Ifx = 7, theny’ = —4; the tangent line is y = —4x + 7 4 4.
(b) To find the location of the horizontal tangent sety’ =0 = \/5 cosx+1=0= x= %Tﬂ radians. When

X = %’", then y = 2 is the horizontal tangent.

lim _ /1 + cos(m csc x) = \/1 +cos (mese (—Z)) = /1 +cos(m-(—2)) = V2

x— —Z

L= 0059‘0:% =cos(%) = 4

076

ing—1
lim_ 522 = & (sin6)
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50. elgnz —‘ag:ﬁl = %(tan@)‘ - 56029’ = sec? (2) =2
51. 11m0 sec [cosx + mtan (772~ ) — 1] =sec [1 + 7w tan (; ;) — 1] = =sec [rtan (§)] =secm = —1
52, i, sin (22) = sin () — sin (~3) = 1

x—0

1 —SiLt = —_— 1 m = —_ =
53. tllémotam(l ) tan(l Jim t) tan(1 — 1) =0

t

: 0 _ . [ _ 1 _ 1y
54, 911m0 cos (%) = cos (7r ehmo sino) = cos <7r . W) =cos(m-1)=-1
-0 0

— —

55. s:2—25int:>v:g—f:—Zcost;Sa———Zsmt:n———2cost Therefore, Veloc1ty—v(4)

= f\/_ 2 m/sec; speed = |v( )| = \/_m/sec acceleration = a( ) \/_m/sec ; jerk —]( ) = \/_m/sec3.

56. s=sint+cost=v = % =cost—sint=a= ‘31—: = —sint—cost=j = % = —cos t+ sin t. Therefore

velocity = v ( ) = 0 m/sec; speed = |v ( ‘)| = 0 m/sec; acceleration = a (g) = f\/i m/sec?; jerk = j (g) = 0 m/sec?.

: I T in3x __ in 3x sin 3x\ __ : : _ : _ _
57. Xlgn0 f(x) = Xlgn0 dnx — hm 9 (S£2%) (S£2%) = 9 50 that f is continuous at x = 0 = X11_r>nO f(x) = f(0) =9 =c.

58. lim g(x)= lim (x+b)=band lim g(x)= lim cosx = 1sothatgiscontinuousatx =0 = lim_ g(x)
x—=0 x—0 x —0F x— 0" x — 0
= 1inb+ g(x) = b = 1. Now gis not differentiable at x = 0: At x = 0, the left-hand derivative is
X —

& (x+b)|__, = L, but the right-hand derivative is & (cos x)| = —sin 0 = 0. The left- and right-hand

derivatives can never agree at x = 0, so g is not differentiable at x = 0 for any value of b (including b = 1).

59. (;f% (cos x) = sin x because d% (cos x) = cos x = the derivative of cos x any number of times that is a
multiple of 4 is cos x. Thus, dividing 999 by 4 gives 999 = 249 -4 +3 = 47 (cos x)

d3 d249/1 3 .
= 3 { w1 (Cos x)} x3 (cos X) = sin x.

_ _ 1 dy __ (cosx)(0)—()(=sinx) __ sinx __ 1 sinx) __
60. (a) y=secx = cos X = dx (cos x)2  cos?x (cosx) (cosx) = sec X tan x
= i ~ (sec x) = sec X tan x
_ _ (sin x)(0) — (1)(cos x) —COS X __ —1 cosx) _ _
(b) y=c¢cscx= sin X = dx (sin x)? sin2x (sin x) ( sin x) = —cscxcotx
= E (csc x) = —csc x cot X

_ __ cosx dy _ (sinx)(=sinx)—(cosx)(cosx) __ —sin’x—cos’x _ —1 _ _ . .2

(C) y =cotx = sin x = dx (sin x)2 sin? x T osin?x T cscr X

= 4 (cotx) = —csc?x

61. (a) t=0—x=10cos(0) = 10cm; t =
(b) t=0—v=—10sin(0) =0 <; ¢ =

sec’

4
— v = —10sin( ):fSﬁgg,t ¥ — v =—10sin(f )7*5\/7522

win Wiy

—x=10cos(]) =5cm;t =3 — x = 10cos(3f) = ~5y/2cm
3

62. (a) t=0—x=3cos(0)+4sin(0) =3ft;t =7 — x =3cos(§) +4sin(F) =41t

t=m — x =3cos(m) + 4sin(w) = =3 ft
(b) t=0—v=—3sin(0) +4cos(0) =4 L:t=7 —v=-3sin(]) +4cos(]) =-3 L,
t=m—v=—3sin(r) +4cos(m) = -4 &L
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A

As h takes on the values of 1, 0.5, 0.3 and 0.1 the corresponding dashed curves of y =

sin (x +h) —sin x

5 get

m sin (x +h) —sin x

closer and closer to the black curve y = cos x because % (sin x) = hli ) B = cos X. The same
—

is true as h takes on the values of —1, —0.5, —0.3 and —0.1.

cos(x+h) —cosx

As h takes on the values of 1, 0.5, 0.3, and 0.1 the corresponding dashed curves of y = n get
closer and closer to the black curve y = —sin x because % (cos x) = hlim0 W = —sin x. The

same is true as h takes on the values of —1, —0.5, —0.3, and —0.1.

(a)

sin(x +h) —sin(x —h)
2h

curves in Exercise 63 illustrating that the centered difference quotient is a better approximation of the derivative of

The dashed curves of y = are closer to the black curve y = cos x than the corresponding dashed

this function.

(b)

-

-1
cos(x +h) — cos(x —h)
2h
curves in Exercise 64 illustrating that the centered difference quotient is a better approximation of the derivative of

The dashed curves of y = are closer to the black curve y = —sin x than the corresponding dashed

this function.

[0+h|—=]0=h] __
2h -

lim0 |h‘2_h‘h‘ = hlim0 0 =0 = the limits of the centered difference quotient exists even
X — —

lim
h—0

though the derivative of f(x) = |x| does not exist at x = 0.
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67. y =tanx = y' = sec’x, so the smallest value | 4 |
— 2 : e — 0 | |
y' = sec” x takes onis y' = 1 when x = 0; | ey '
y' has no maximum value since sec? x has no : |l
m™ T . /s M

largest value on (f 3 5) ; ¥ is never negative : 1 ! )
since sec’x 1. :' = ’”2:
i =tan x ]
| y {
| !
| I

68. y=cotx = y = —csc?

x s0 y’ has no smallest
value since —csc? x has no minimum value on
(0, 7); the largest value of y' is —1, when x = g ;
the slope is never positive since the largest

value y’ = —csc? x takes on is —1.
69. y= % appears to cross the y-axis aty = 1, since A y
lim $MX — [.y = $n2X annears to cross the y-axis
x—0 X y X pp y Ly =(sinax)/x

aty =2,since lim 22X = 2;y — S0 appears to
X —
cross the y-axis at y = 4, since lim 0% — 4, 2
x—0 X

y=(sin2x)/x
However, none of these graphs actually cross the y-axis d

since x = 0 is not in the domain of the functions. Also, y=(sinx)/x
lim 13X — 5 im M3 — 3 and lim Stk / /
o 0 ) sin 5x Siﬂ(*x3; -_ . - | ¢ zx

=k = the graphs of y = *°2%, y = =——, and \/ \/\

y = % approach 5, —3, and k, respectively, as

x — 0. However, the graphs do not actually cross the

y-axis.
0. @ b s (1) (1)
1 .017452406 | .99994923
0.01 017453292 | 1
0.001 .017453292 | 1
0.0001 017453292 | 1
Jimy = Jimy S = i S = Jim, S5 =y 0 =he gy
(converting to radians)
(b) h cos}lllfl
1 —0.0001523
0.01 —0.0000015
0.001 —0.0000001
0.0001 0
hlim0 % = 0, whether h is measured in degrees or radians.

d
> dx

sin(x+h)—sinx __ lim (sin x cos h 4 cos x sin h) — sin x
b h—=0 h

= lim - (sinx - €23=1) + lim = (cos x - %) = (sinx) - lim = (*4=) + (cos x) - Tim ~(**)

(c) Indegrees, < (sinX) = hlim0

= (sin x)(0) + (cos X) (155) = 745 €08 X
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(d) In degrees d (COS X) _ lim cos(x—H;l)—cosx — lim (cosxcosh—si;xsinh)—cosx
—0 h—0
— lim (cosx)(coshfhl) smxsmh — lim (COS X - coshfl) _ lim (sinx . sin )
h—0 h—0 -0

_ : cosh—1 : : sin h T o

= (cos X) hlgn0 ( T) — (sin x) hm ( ) (cos x)(O) — (sin x) (180) = — g0 Sin X

42 : _d T _ T d T : _ T \3 .
(e) gz (sinx) = 4 (m cos x) = — (m) sin X; dx3 (sin X) = I (— (m) sin x) = — (m) COS X;

d 2 L& d T \2 3
L(cosx) = & (- Zsinx) = — (&) cosx; & (cosx) = & (— (7&5)  cos X) = (15) sinx

3.6 THE CHAIN RULE

10.

11.

12.

13.

14.

fw)=6u—9 = f'lu)=6 = f'(g(x)) =6;gKx) =5 x4 = g'(x) = 2x3; therefore di = f'(g(x)g'(x) = 6 - 2x3 = 12x3

fw) =2 = f'(u) =6u® = f'(g(x)) = 6(8x — 1)%; g(x) = 8x — 1 = g'(x) = 8; therefore dy = f'(g(x))g'(x)
— 6(8x — 1) - 8 = 48(8x — 1)

f(u) =sinu = f'(u) =cosu = f'(g(x)) =cosBx + 1); g(x) =3x + 1 = g'(x) = 3; therefore g—i = f'(g(x))g'(x)
=(cos(3x+ 1)(3) =3 cos(3x+ 1)

f(u) =cosu = f'(u) = —sinu = f'(g(x)) = —sin (F) ; gx) = F = g'(x) = — 1; therefore g—i = f'(g(x))g'(x)

——sin(3) () = sin(3)

f(u) =cosu = f'(u) = —sinu = f{'(g(x)) = —sin(sin x); g(x) = sinx = g'(x) = cos x; therefore
dy = f'(g(x))g'(x) = —(sin (sin X)) cos X

f(u) =sinu = f'(u) =cosu = f'(g(x)) = cos(x — cos X); g(X) = X —cos X = g'(x) = 1 + sin x; therefore
dy = f'(g(x))g'(x) = (cos (x — cos x))(1 + sin x)

f(u) =tanu = f'(u) =sec’u = f'(g(x)) = sec? (10x — 5); g(x) = 10x — 5 = g'(x) = 10; therefore
dy = f'(g(x))g'(x) = (sec? (10x — 5)) (10) = 10 sec? (10x — 5)

f(u) = —secu = f'(u) = —secutanu = f’(g(x)) = —sec (x? + 7x) tan (x> + 7x) ; g(x) = x> + 7x
= ¢'(x) = 2x + 7; therefore g—i = f'(g(x))g'(x) = —(2x + 7) sec (x? + 7x) tan (x> + 7x)
Withu = 2x + 1),y =u’ & = & du— 5549 — 102x + 1)*

&x = du dx
Withu =4 —3x),y=u’ & = & =9u®.(-3) = —27(4 — 3x)°
Withu=(1—-13),y=uT & =& _ g5 (1) (135"
Withu= (3 —1),y=u"10; & =& du_ o011 (1) — _5(x _ )~

3
Wit = (§4x— 1)y =uh =g g = e d) =4 (3 ex-1) G d)

S — 32 . x>
Withu =3x> —4x + 6,y =ul/2: $ = & / (6X_4)_3x+4x+6
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15. Withu =tanx,y = sec u: g—i = S—z % = (sec u tan u) (sec? x) = (sec (tan x) tan (tan x)) sec® x
: _ 1o — Ldy _dy du _ 2 1) _ 1 2 1
16. Withu=7— 1 y=cotu: ¥ =g & = (—csc?u) (&) =— L cse? (- 1)

; — g — 3 &y _dy du _ 3.2 — 02
17. Withu =sinx,y =uv’: § = 3 ¢ = 3u cos x = 3 (sin” x) (cos x)

18. Withu=cosx,y =5u"% £ = ¢ & = (—20u™?) (—sin x) = 20 (cos ™ x) (sin x)

dj - d - —
19. p=V3-t=3-9" = F=53-0"-§6-0=-56-0""?= -

.q=V2r—r2=2r—r = Jd=z0Q2r—r*) - L 2r—1r)=zQ2r—r T —
20 q=v2r-r=-" = §=te-)7 - =i e-m= 2=

21. s = 37 sin 3t + & 5- COs 5t = ‘3 = 3= cos 3t- %(3t)—|— ;iﬂ(—sinSt) . %(St) = % cos 3t — % sin 5t
= % (cos 3t — sin 5t)

22. s =sin (W) + cos (%;”) = 9 — ¢og (37“) .4 (@) — sin (3”‘) .4 (@) = %2” cos (32 ) 3; sin (m)

dt 2 dat \ 2 2 ) Ta\2 2
__ 37 37t . 3wt
= 37 (cos ' — sin 37)
_ 71 dr _ 2 __cscBhcotf+csc’f _ csch(cotf+csch) csc
23. r = (csc 0 + cot 6) &= —(csc O+ coth)~ (Csc 0 + cot ) = a0 ootfT = (eI oot0f = cecftoord
_ _ 3/2 dr _ .3 _ 1/2 d _ — _ 2
24. r=6(sec § —tan 0)°/* = G =6 5(secd —tan ) '~ j5(sec & —tan §) = 9+/sec O — tan H(sec O tan & — sec*6)

25. y=x*sin*x + x cos?x = gy—XQ;(sm x)—|—smx L (x) +x £ (cos™2x) +cos2x - 4 (x)
(4 sin® x (%( (sin x)) + 2x sin* x + x (—2 cos 3 x - & (cos x)) +cos2x

2 (4 sin® x cos x) + 2x sin? x + x( (=2 cos™® x) (—sin x)) + cos ™2 x

2

3 2

=x
=x
4x X cos X + 2x sin? x + 2x sin x cos 3 x + cos 2 x

sin

26. y=1sin?x—%cos’x = y =1L (sin?x) +sinPx- L (1) -3 L (cos?x) —cos’x- L (%)
=1 (=5sin%xcosx) + (sin ™" x) (— %) — 3 ((3 cos?x) (—sin x)) — (cos®x) ()
= —3sin"%x cos x — % sin"®x + x cos’ x sin x — % cos®x
-1 -2
27. y=2Bx-2+(4- %) = j—i:21(3x—2)6-d@ix(sx—2)+(—1)(4—2—§2) FACEE
=50Bx—=25-34(-1)(4 —2;) (%) = (3x—2)6—%

28 y=(5-202+124+ D" = ¥ = 365204 +2C+1)°(-2)=66-207"— (L) 2+ 1)°

_ 6 (%“)3

— G-t x2

29. y=x+)'x+ D = L=Ux+D'EDE+ DL x4+ D+ x+ DP@@Ex+3)P - L (@x+3)
(4x + 3=+ D7HD) + x+ D3@)Ex +3)°@) = —3(dx +3)*x + D7+ 16(dx + 3 (x + D73

X : J i
= I (2304 +3) + 16(x + 1)] = SLDLRED
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y=0x=51(x-5x)" = ¥ =02x-5716)(x? - 5%)°(2x — 5) + (x2 - 5x)°(~ D(2x — 5)72(2)

5  2(x2-5x)°
=6(x? - 5x)° — 25 =3

h(x) = x tan (24/X) +7 = N(x) =x & (tan (2x'/2)) + tan (2x1/?) - L (x) + 0

= xsec? (2x1/2) - & (2x1/2) 4 tan (2x1/2) = x sec? (21/x) - ﬁ + tan (2,/x) = y/x sec? (24/x) + tan (2,/%)

k(x) =x?sec (1) = K(x) =x* i (sec 1) +sec (1) - & (x?) =x?sec (1) tan (1) - & (1) +2xsec (1)
=x%sec (1) tan (1) - (= &) +2xsec (1) = 2xsec (1) — sec (1) tan (1)

f(x) = /7 +xsecx = f'(x) = %(7+xsecx)_1/2(x~ (secxtanx) + (secx) - 1) = Xseextanxtsecx

24/T+xsecx

_ tan3x  (x+7)*(sec?3x:3) — (tan3x)4(x + 7)1 (x+7)* (3(x + 7)sec?3x — 4tan 3x)
g(x) = 8 = ¢(x) = o - ;
(x+7) [(x+7)%] (x+7)
_ (3(x+7)sec?3x — 4tan 3x)
- (x+7)°

. 2 . . . e e
f(a):( sin 0 ) = f/(Q)ZZ( sin 0 ) d( sin 0 )_ 2sinf (1 +cos O)(cos 0) — (sin §)(—sin 6)

1 +cos 6 1 +cos 6 d0 \T+cos6/) — T+cosf (1 +cos 6)2
(2 sin 0) (cos 6 +cos> 0 4-sin®f) _ (2sinfh)(cosf+1) _  2sinf
(1 +cos 6)3 - (1 +cos 6)3 " (1+4cos 6)?
_ (l4sin3t\"1 _  3-2 repy — (I+5sin30(=2) - (3—-20)(3cos3t) _ —2—2sin 3t — 9 cos 3t+ 6tcos 3t
g = ( 3-2t ) = Trsm3t =~ gom= (1 + sin 3t)? (1 + sin 3t)?

r = sin (6%) cos (20) = & = sin (6?) (—sin 20) & (20) + cos (26) (cos (62)) - & (6%)

= sin (#?) (—sin 260)(2) + (cos 26) (cos (#%)) (26) = —2 sin (6?) sin (20) + 26 cos (26) cos (6?)

Ny

r= (sec \/5) tan () = & = (sec \/5) (sec? §) (= g) +tan (3) (sec V0 tan \/_> (7)

1
0
L)
= - 917 sec \/ésec2 (3) + 2%/5 tan (%) sec v/ 0 tan 9 = (sec ) {tan Ouan(y) _ _)(

. ) dq _ t d ¢ . t VIt g (Vi)
q—sm< 1+1) - —C°S<m) d (m) —Cos(m) i)
t+1-— —F—
_ t N 2V/t+1 t 2+ D) —t) __ t+2 t
_COS( t+1) t+1 _COS(\/H_I) (2(r+1)3r’2) - (2([+1)3’2) COS(M)

= con () = 8 = —ese? () § (49 = (e (321)) (5250

y = sin? (7t — 2) = iy*ZSIH(Wt 2) - fsm(7rt 2):2sin(7rt72)-cos(7rt72)~%(mfZ)

= 27 sin (7wt — 2) cos (7t — 2)

dy _

4 = (2sect) - (sec 7t) = (2 sec wt)(sec 7t tan 7rt) - % (mt) = 27 sec? «t tan 7t

y = sec’mt =

y=(+cos20™ = ¢ = —4(I +cos 2077 - & (I + cos 20) = —4(1 + cos 20)*(—sin 20) - § (20) = FE A

)

NI

y=(1+cot(s)) " = G =-2(1+cot(3)) - §(1+cot(5)) = -2 (1+cot(5)) " - (~esc® (3)) - &
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45. y = (ttant)"” = ¥ = 10(ttant)’(t - sec’t + 1 - tant) = 10’ tant(tsec’t + tant) = 10t'° tan’t sec’t + 10’ tan'’t

. N\4/3 . . . int)!/3 int)*/3
46. y = (t_3/4sm t) 3 t‘l(smt)4/3 = % = t_l(;—‘)(sm t)l/Scost —t~2(sin t)4/3 = 4<Smt)3t cost _ <S‘“t;)
__ (sin t)l’/3(4t cos t — 3cost)
- 3t
47 . e\’ Ay g ¢ 2. (P-4)(20)-CBC—4) 3¢ ad_ge-_3t4a2 _ (P -40)  —32(F+4)
YT \F-a de T\ P-4 (840 G E-4*  de-4t T (@e-4)
_(3-4\S5 . dy o (3t-4\"6 (5t+2)3-(3t—4)-5 _  <(5t42\6 15t+6- 51420 _ (t+2)° 26
48. y = (5t+2) = a = 5(5t+2) (5t12)° - 5(3t74) (51+2)° 5(3&4)6 (5t+2)%
_ —130(5t+2)*
- (3t-4)°

49. y = sin (cos 2t — 5)) = dy = cos (cos (2t — 5)) - % cos (2t — 5) = cos (cos (2t — 5)) - (—sin (2t — 5)) - % 2t—5)
= —2 cos(cos (2t — 5))(s1r1 (2t —5))

50. y =cos (5sin (%)) = ‘(jj—y = —sin (5 sin (3)) - % (5sin (%)) = —sin (5 sin (%)) (5 cos (%)) : % (4
— —sin( i (5) (o5 (2)

51. y = [1 + tan* (%)] =
=121 + tan* (%)]2 [tan3 (ﬁ) sec? (15) - 5] = [1 +tan* (55)

52 y= L1 +cos? (7] = % =2 [1+cos2(70)]" - 2 cos (TO)(—sin (T))(7) = —7 [1 + cos? (7)) *(cos (7¢) sin (7))

t

53. y = (1+4cos ()" = ¥ =1 (14cos () *- & (1+cos (2)) = L (1 +cos (12)) > (=sin (2) - & (1))

=—1(1+cos ()" Y2 (sin (12)) - 2t = — )

1+ cos (t2)

54. y_4sin(m> = ;‘1{4cos( 1+\ﬂ>-g<m)_4cos<m)-m-;{(1+\/E)

(i) _ ()
N \/H-\/E-z\/I N \/t+t\/I

55. y = tan?(sin’t) = € = 2tan(sin®t) - sec(sin’t) - (3sin’t - (cost)) = 6 tan(sin’t)sec?(sin’t)sin’tcost

56. y = cos*(sec?3t) = & = 4cos’(sec?(3t))(—sin(sec?(3t)) - 2 (sec(3t))(sec(3t) tan(3t) - 3))

= —24cos’(sec?(3t))sin(sec?(3t))sec?(3t) tan(3t)

57, y =312 —5)' = & =30.4(22 - 5)°(40) +3- (22 - 5)* =322 - 5)° [16t2 28— 5} =302 - 5)° (182 — 5)

58.y_\/3t+\/2+\/ﬁ;» ‘g—%(3t+\/2+\/ﬁ)_l/2< (2+J—) Ly 1))

=1 _ 1 12\@\/?\/?—1 _ lzm\/m_l
ZF Vi Nw_ EE 2y 2/ | AV /Ty 21ty 3y 2 it
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R e R e R T R JRE J(ER A (R RE ¢
—CHRAHDER) @ O+ =0+ D+ S0+ =5+ D 1+
5+ 1+

R e (R R e P D R (RVA RS

( y =
=¥ =3[ VR (B e (1= VR (= )
SH[FP T e -V = R R - V)

y=3cotBx—1) = y=—1csc?Gx—DB)=—3csc?Bx—1) = y" = (—3) (escBx— - L cse(3x — 1))
= — % csc(3x — 1)(—csc(3x — 1) cot(Bx — 1) - ddx (3x —1)=2csc2Bx—DcotBx—1)

y=9tn(3) =y =9(sec? (§)) (5) =3sec* (5) = " =3-2sec(3) (sec(§) tan (§)) (5) = 2sec? (3) tan ()

y:x(2x+1) Y =x-402x+ 17 Q) +1-2x+ 1) = 2x+ 1)’ 8x + 2x+ 1)) = 2x + 1)*(10x + 1)
= y" = (2x+ 1)*(10) + 3(2x + 1)*(2)(10x 4+ 1) = 2(2x 4+ 1)*(5(2x + 1) + 3(10x + 1)) = 2(2x + 1)*(40x + 8)
= 16(2x + 1)°(5x + 1)

y = x> (x} — 1)5 =y =x>5x>- 1)4(3x2) +2x(x* — 1)5 =x(x3 — 1)4 [ISX3 +2(x3 - 1)] =(x} - 1)4(17x4 — 2x)
=y == D683 —2) +4(x* — 1)’ 3 (17x* — 2x) = 2(x* — 1)’ {(x3 —1)(34x% — 1) + 6x2(17x* — 2x)
=2(x* — 1)’ (136x° —47x3 + 1)

gx) = /x = gx) = 2—% = gh)=1landg() = 3;fw=v’+1 = f'(0)=5u" = fgl)=f(1)=S5;
therefore, (fo g)'(1) = f'(g(1)) - (1) =5 - % =3
g =01-0"=d®=-0-02(D=g%5 = g-D=jadg (1) =;; (u)zl—ﬁ
= f'(u) =4 = f'(g(—1) =1 (1) = 4; therefore, (fo g)/(—1) = f'(g(-1)g(-1) =4- 1 =1
gx) =5 = gx) = 2\[ = g(l) =5and g'(1) = 3 ; f(u) = cot (T8) = f'(w) = —csc? (55) (75) = 75 csc? (T3)
= f'(g(1)) = 1'(5) = — 75 csc? (§) = — 7% ; therefore, (fo g)'(1) = f'(g(1)g'(1) = — % - 3

g/(l) =mf(u) =u+sec’u = f'(u)=1+2secu-secutanu

g =mx = g =1 = g(
4 1+ 2sec? § tan § = 5; therefore, (fog) (1) =f'(g(3)) ¢ (3) =57

=1+2sec?utanu = f'(g(

gx) =102 +x+1 = g'(x) =20x+ 1 = g0) = land g(0) = I; f(u) = 2 = f'(u) = %

= (‘é‘iﬁ% = {'(g(0)) = '(1) = 0; therefore, (f o g)'(0) = '(g(0))g'(0) =0-1=0

_1\2 _ _
g =%-1=g=-—5 = g-hH=0and g(-1) =2:f(w) = (:4)" = fw=2() & (~9)
=2 (%}) Ht DO DO 208 = M) = f(g(—1)) = £(0) = —4; therefore,

(fog)(=1) =f'(g(=g'(-1) = (=42 = -
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71y =f(g(x)),f'(3) = -1, g'(2) =5,g(2) =3 =y =f'(g(x)g'(x) =y’
=(-1)-5=-5

72. r=sin(f(1)), f(0) = 1, £'(0) =4 = § = cos(f(t)) - f'(t) = & T cos(f(0)) - £'(0) = cos(3) -4 = (

73. (@) y=2(x) = ¥=20(x) = & B =20)=2(}) =2

) y=f)+ex) = F=F0+g® = F| =G +gG)=2r+5

© y =180 = § =f0g® +g0r' ) = ¢

= f(3)g'(3) + g3)f'3) =3 -5+ (—4)(Q2m) = 15— 8«

_ Q) —fQ)g@ _ (2>() &)=3) _ 37
P =%

0 dy _ s0f 0 — g0 dy
@y=w = & O = &

x=2

@ y="fgx) = F=1(gxgx = & = f'(g2)g'(2) = '(2)(=3) = 5 (-3) = —

M y=@E)"? = § =500 o= = §

@ y=@E))? = $=-2ex)? gx) = ¥ 7
(h) y = () + @x)?)* = £ =5 () + x)?) 7 (200 - (%) +2g(x) - g'(x)

=&, = 2 (@@ + (g(2>>2)*” TRAFQ) +25g @) = § (8 +28)7 7 (2-8- 1 +2-2-(-3) =~ O

<

_f’<2>_(%)_L_ 1

x=2 12~ 28 6/8 122 24
=223 *gB) = -2(-H3-5=3

74 () y=56x) —gx) = ¥ =500 -gx) = ¥

=5 —gdM=5(-3) - () =1
(b) y =)’ = §& =100 (Be)*¢ () + (@) F'(x) = | = 3f0)(e0)’¢'(0) + (2(0)°F'(0)
=312 (1) + (1P =6

_ i) &y _ DI -—fge o dy| e+ DI~ 1))
© Y=g+ = &= (e + 17 = &, e+ 17
_ D (-3)-B)(=5) —1
(—a+17 =

) y=fgx) = F =g = ¢

=f'gONg© =M (L) = (- (E)=-1

© y=glx) = & =0 = & = g@OI0) = g(1)S) = (1) (5) = — 4

® y=x"+ix)" = & — a(x!+ £00) 7 (11x10 4 /(%)) = B Z a1+ 1) (1141 (1)
= 201433 (1= =(-2)(R)=-1 x

(8 y=1x+gx) = d*y =f'(x+gx) (1+gx) = d*y ) :f’(0+g(0))(1+g’(0)):f’(l) (1+1)
=3 @) =-35
75. %:g—;-%: s=cosf = %z—sin@ = g—; 6:%:—sin(%):lsothatds—g§ “:]le-S:S
76. L= 8 y=x2+Tx-5 = F=x+7 = ¢ :l—9sothatdY—j—§-%:9-§:3
77. Withy = x, we should get & 9 — 1 for both (a) and (b):
@@ y=%+7= gﬁzg,u:SX—SS 4 — 5; therefore, dy—gﬁ @ = 1.5=1,as expected
O y=1+l= 9= Liy—x-D'=> 8= x-1) ) = = l)z,thereforedy*glyl d
= (x:11)2 =G _‘11)71)2 . (x:11)2 =x—-1)2- (XEI)Z = 1, again as expected
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With y = x*/2, we should get & = 3 x!/2 for both (a) and (b):
@ y=uv= PL=3%Hu=/x = L= zﬁ;therefore,%:g—z-g—i:%?-2\1/;:3(\/§)2-2\1/;:%\/§,
as expected.

(b)y:\/ﬁé%:—f u=x% = § =3x% therefore, %:%-%:—2\%-3){2: L. 3x2 = 3x1/2,

again as expected.

_ (x—1)2 _ _ (0—1)2 _ 2 _ x—1 (x+1)1—(x—1)1 _ ~A(x—1) ) 4k
Y= (X+1) andx =0=y = (m) =(-1)"= 1~}’/—2(x+1)' (x+1)° _2(x+1) x+17 7 (x+1)
400—1 _
Voo™ ((()+1)3>:F:_4:>y_1__4(x_0)=>y=—4x+1

~1/2 _
y=vx2—x+T7andx=2=y=4/(2 +7—\/§_3y_%X—X+7) (zx_l)zz\/zﬁ

_ e s ;»y_g—;(x_zby 42

y=2un(3) > 8= (25 2) (5) = F et 3

a ¥

$| =73sec? (§) =7 = slope of tangent is 2; thus, y(1) = 2 tan () =2 and y'(1) = 7 = tangent line is
x=1

2

givenbyy—-2=n(x—1) = y=mx+2—7
b) y=2 S602 ( 1 ) and the smallest value the secant function can have in —2 < x < 21is 1 = the minimum

Valueofy is 7 and that occurs when 7 = 7 sec? (Z*) = 1 =sec? (3) = £1=sec (%) = x=0.

(@) y=sin2x = y =2cos2x = y'(0) =2cos(0) =2 = tangent to y = sin 2x at the origin is y = 2x;

y=-sin(}) = y=—1cos(}) = y(0)=—4cos0=—3 = tangenttoy = —sin (}) at the origin is
y=— % x. The tangents are perpendicular to each other at the origin since the product of their slopes is —1.
(b) y=sin(mx) = y =mcos(mx) = y(0)=mcos0=m;y=—sin(X) = y' =—Lcos()
= y'(0)=—21cos(0)=—21. Sincem- (— 1) = —1, the tangent lines are perpendicular at the origin.
(¢) y=sin(mx) = y = mcos(mx). The largest value cos (mx) can attain is 1 at x = 0 = the largest value
y’ can attain is |m| because |y’| = |m cos (mx)| = |m| |cos mx| < |m\ -1=|m|. Also,y = —sin ()
=y == % cos (ﬁ) = ly|= |— cos( )| < | | |cos( )| < \ml = the largest value y’ can attain is |%|

(d) y=sin(mx) = y =mcos(mx) = y(0) =m = slope of curve at the origin is m. Also, sin (mx) completes
m periods on [0, 27]. Therefore the slope of the curve y = sin (mx) at the origin is the same as the number
of periods it completes on [0, 27]. In particular, for large m, we can think of “compressing” the graph of
y = sin x horizontally which gives more periods completed on [0, 27], but also increases the slope of the
graph at the origin.

s=Acos(2rbt) = v = % = —A sin 27bt)(27b) = —27bA sin (27bt). If we replace b with 2b to double the
frequency, the velocity formula gives v = —4nbA sin (4wbt) = doubling the frequency causes the velocity to
double. Alsov = —27bA sin(27bt) = a = Q = —47?b2A cos (27bt). If we replace b with 2b in the
acceleration formula, we get a = —1672b%A cos (47rbt) = doubling the frequency causes the acceleration to
quadruple. Finally, a = —47?b?A cos (27bt) = j = ¥ = 873b?A sin (27bt). If we replace b with 2b in the jerk
formula, we get j = 647°b3A sin (47bt) = doubling the frequency multiplies the jerk by a factor of 8.

84. (a) y=37sin 5% (x — 10D)] +25 = y' =37 cos [5% (x — 101)] (3%) = 2% cos [3% (x — 10D)] .

The temperature is increasing the fastest when y’ is as large as possible. The largest value of
cos [%65 x— 101)] is 1 and occurs when 2 365 (x—101)=0 = x =101 = onday 101 of the year

( ~ April 11), the temperature is increasing the fastest.
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(b) y'(101) = 2T cos [ (101 — 101)] = 2% cos (0) = 2L ~ 0.64 °F/day

s=(1+4)1? = v=3 =1 —|—4t)_1/2(4) =2(14+407Y% = v(6) =2(1 +4-6)"1/2 =  m/sec;

v=201+40)"1 = a=9 =—1-201+40732@) = —4(1 + 4)7%? = a(6) = —4(1 +4-6)73/2 = — 3= m/sec?

— dv —dv _dv s dv _ d — _k_ —dv _ds _ dv
We need to show a = {f is constant: a = i = ¢ - ¢ and & = ¢ (k\/g)_2\/g > a=gF-g=q "V

_ _k . — & which i
=57 ky/s = ¥ which is a constant.

Vproportional to ﬁ = V= % for some constant k = g—: = - 2 . Thus,a = ?TZ = g—z - % = ‘;—Z -V
— k _ _ K1
=—5a5 " =—-3 (S—Z) = acceleration is a constant tlmes L 50 a is inversely proportional to s>

Let & =f(x). Then,a=§ = - & = f(x) = L (&) - f(x) = L (f(x)) - f(x) = f'(X)f(x), as required.

T= 27r\/gz>% 2r -

= % , as required.

Therefore, 4T S g{ % = \/% -kL = ﬂi\[f 27rk\/7

\/?

)
—
o |
.
0 |—
[0d]
3
02 I

No. The chain rule says that when g is differentiable at 0 and f is differentiable at g(0), then f o g is
differentiable at 0. But the chain rule says nothing about what happens when g is not differentiable at 0 so
there is no contradiction.
Ash — 0, the graph of y = $in20cth)—sin 2x 2("*2)‘““ Zx y
approaches the graph of y = 2 cos 2x because

. sin 2(x+h)—sin2x __ d /: _
hlgno = = g (sin 2x) = 2 cos 2x.

cos [(x + h)*]—cos (x?)

Ash — 0, the graphof y = -
approaches the graph of y = —2x sin (x?) because
Jim Wﬂ = & [cos (x?)] = —2x sin (x?).
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93. (a) da/dt

o—-o0 1
-7 -n/2 /2 ™
o -1 o o]

(b) % = 1.27324 sin 2t + 0.42444 sin 6t 4 0.2546 sin 10t 4- 0.18186 sin 14t

t

(c) The curve of y = & approximates y = % df/dt

the best when t is not —m, — g 0, %, nor . 1
/\N\/\ .
t

94. (a) dq/dt

1

—0 o—a- t
-t -u/2 T w/2 T
-1

(b) % = 2.5464 cos (2t) 4+ 2.5464 cos (6t) + 2.5465 cos (10t) + 2.54646 cos (14t) + 2.54646 cos (18t)

© dh/dt

ANl
R

3.7 IMPLICIT DIFFERENTIATION

1. X’y +xy>=6:
Step 1: (x2%+y-2x)+(x-2yg—§+y2.1) ~0

Step 2: x> % + 2xy ?TZ = —2xy —y?
dy

Step3: 3 (x* + 2xy) = —2xy — y*

Loody . —2xy—y?
Step 4: dx T x2+2xy

2 X4yt =18xy = 33y P =18y +18x P = (ByP—18x) L =18y —3x* = £ =9

3. 2xy+y?=x+y:
Step 1: (2x%+2y)+2yg_i:1+g_z
Step 2: 2x%+2y%7%:172y
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Step3: T (@2x+2y—1)=1-2y

Cody . 1-2
Step 4: d_i - 2x+2yy—1
X3 —xy+y’=1 = 3x? —y—xdy—i—Sy2 gz:O = (3y2—x)%:y—3x2 = g—izg};i’i

(x —y)? =x* —y*
Step1: X2 [2(x—y)( - d—y)} X —y)Ex) =2x — 2y &
Step2:  —2x%(x — y) +2y dy =2x — 2x%(x — y) — 2x(x — y)?

Step 3: % [—2x2(x —y) +2y] = 2x [1 — x(x —y) — (x — y)?]

Step 4: dy _ 2x[1-xx-y)-Gx-y’] _ x[l-xGx-y-&-y*] _ x(1-x+xy—x*+2xy—y?)
p & dx —2x*(x —y) +2y - y—x3(x—y) - X’y —x+y

— x=2x% 4 3x% — xy?
X2y —x3+y

Bxy + 72 =6y = 2(3xy+7)- (3x ooy 3y) =6 % = 203xy +7Bx) L —6 L = —6y(3xy +7)

2

= % [6X(3Xy + 7) - 6] = —6}’(37(}’ + 7) = g_i = - x(gii,xﬂ};;)l)l = 1ix3yx2:,-zy7x
2 _ x—1 x+D-x=1) __ 2 dy _ 1
Y= > e ="y Ty~ &= Yx D2
X3 = x+3y = x4 33y =2x —y = 43 + 9%y + 3%y =2 —y' = (3x3+1)y’ =2 —4x® — 9x%y

2—4x3 —9x2
= y'= 3;:3+1xy
x=tany = 1=(sec’y) L = £ = ey = cos’y
Xy = cot (xy) = x— +y= —CSCQ(Xy)( y) = xj—i + XCSCQ(Xy)S—i = —ycsc?(xy) — y

= [ese®(xy) + 1

= 8 [x o xese)] = -y [ese?oy) 1] = & = el -
x +tan(xy) =0 = 1+ [sec? (xy)] (y + X g—i) =0 = xsec’(xy) & Y= 1 —ysec? (xy) = % = 771;5&26&(;”
_ —1 _y _ —cos’(xy) y _ —cos’(xy)—y
 xsec?(xy) x X x X

dy 3x%y? — 4x°
cosy —2x3y

x*+siny = x}y? = 4x3 —|—(cosy)d =3x%y*+x} 2y & - (cosy—2x3y)g—i:3x2y2—4x3 => F=

.ysm(y)_l—xy = y[cos(y)-(—l)yl—z-g—i]—f—sin(%)-%:—xd—y—y =

d _ d__ — _ —y?
% [—;COS( >+81n< )+X:| - y:> di cos( )jsm( )+x_ysin( )7cyos( )ery

x cos(2x 4 3y) = ysinx = —xsin(2x + 3y)(2 + 3y’) + cos(2x 4+ 3y) = ycosx + y’ sinx
—2xsin(2x + 3y) — 3xy’sin(2x 4 3y) + cos(2x + 3y) = ycosx + y'sinx

= cos(2x + 3y) — 2xsin(2x 4 3y) — ycosx = (sinx 4 3xsin(2x + 3y))y’ = y/ = (2t 3y) ~ 2xsin(2x+ 3y) —ycosx

sinx + 3x sin(2x + 3y)

dr_ Zﬁ_ \/;

27]:2f:> T Ve

do
r=2V/0=30+ 563" = $ 012 =0"15 4071 = S =020 54971
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23.

24.

25.

26.

27.
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sin(@d) =3 = [cos®)] (r+0 L) =0= L[fcos(rf)] = —rcos(rf) = & = ;rcf)‘;s(?e‘? = —1,cos(rf) #0
.cost+cot =rf = (—sinr) F —csc? 0 =r+60 8% = ¢ [—sinr—f] =r+csc? = & = —rs;isf;

y
oy = YEDEY 7”"(73) sincev — — % — &y g oy -x - (-y) -1
y = V2 = V2 y = y o =Ty = V3 =3
X2/3 4 \2/3 — 2 —1/3 4 2 —1/3 dy _ dy 12-1/3] — _ 2 4-1/3 dy _x B y\1/3,
+y =1 = 3xP 43y PR =0= 3y = =y =3 v = ()"
- 1/3 _9/:
) o ) p (= Ly )y gyl (Lx2B) X3 (=5 y7F) (7 im) +y'E (5x7)
Differentiating again, y” = 7 . = 275
d”y_ 723713 1/34—4/3 —
= ax2 3 / / + y / / 3x4/3 + 3y1 3x2/3

Y =x24+2x = 2yy =2x+2 = y = B2 = y—oeny _ Y=6D (%)

y ¥y y
N % =y = yz—(;;- ?
V-2x=1-2y = 2y-y —2==2y = yQy+2)=2 = y = =@+ D theny’ = —(y+1)2-y

2
=-+D2y+ Dl = P=y' = (y:rll)s-

2 fy=x—y =y Vy=1-y =y@y"+l)=1= L=y = 1%+1 = \/—\y/il ; we can
differentiate the equation y’ (y*/2 4+ 1) = l againto find y": y' (— 1y 3/2y’) +(y 2 +1)y"=0
2
1 1 —3/2
-1/2 n_ 1 [yN2y—3/2 &y _ o _ (y*1/2+1> o 1 _
= (y + 1) y 2 [Y] y = 2 y CRES)) 2 (y 121 1) 2(1+\/§)3
Xy+y2 =1 = xy +y+2yy =0 = xy +2yy = -y = yYER+2)=—y = ¥ = 5555 ="
_ —eaayyasay) _ 2o [y 142 (555)] |l b an vty oy
- (x+2y)? (x+2y)? - (x+2y)?
o 2y(x+2y)—2y* 2y +2xy _ 2y(x+y)
T 2y T (x+2y)7 T (x+2y)8

X3+y3=16 = 3x2+3y’y =0 = 3yly = -3x> = y = — §—j ; we differentiate y?y’ = —x? to find y”:

212 4

—2x—2y (-3 72x7243
Yy Y Ry-yl= -2 = vy = - -yl =y = yz( 2 _ 7
_ =2yt -2t d’y —=R-32_ 5

y? dx? 22 32

xyFy? =1 = xy +y+2yy =0 = yx+2) =y = y = 5 =y = SR,
. . (=2) —(1)(0)
since y'| ,_,, = — 3 we obtain y’ oy = = 2E)-00 )4 =-1

y+x2=y' —2xat(-2,Dand (-2,-1) = 2y L +2x =4y’ L -2 = 2y L 4y’ ¥ = 22

dy 3y dy _ x+1 dy — dy —
= ax (2y —4y ) =-2-2Xx = X~ 2yiy = ax o) = —1and o o) =1

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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28. (X2 +y2)? = (x —y)?at(1,0)and (1, 1) = 2(x2+y?) (2x+ 2y g_Y) —2x—y) ( - j—Y)

=1

(1,00 B

—2x (x2 2 X —
= PRy V) + -y = X (E )+ x—y) > § = PRI o

and % =1
a,-1

29. X2+xy—y2=1= 2x+y+xy —2yy =0 = (x=2y)y = 2x—y = y’:g’;—fi;

(a) the slope of the tangent linem = y'| ,, = I = the tangentlineisy —3 =7 (x—2) = y=jx— 3

(b) thenormallineisny:f%(fo) = y:f%x+%
30. X2—|—y2=25 = 2X+2yy/:() = y’:—%;
(a) theslopeofthetangentlinem:y’|(374>:—§ :%:>thetangentlineisy+4:%(X—S)éy:%x—%
> G,-4)
(b) thenormallineisy+4:fg—‘(xf?)) = y:f%X

31 X2y =9 = 2%xy? +2x%yy' =0 = XPyy' = —xy? = y = -7

X °*

(a) the slope of the tangent line m = y/| = =3 = thetangentlineisy —3=3(x+1) = y=3x+6

%|(71,3)
(b) thenormallineisyf3:*%(x+1) = y:,%er%
32. P = 2x—dy—1=0= 2yy =24y =0 = 2y -2y =2 = y = 15}

2 9
(a) the slope of the tangent line m = y/| o = —1 = thetangentlineisy — 1 =—-1(x+2) = y=—-x—1
(b) thenormallineisy —1=1(x+2) = y=x+3

33. 6x2 +3xy +2y2 + 17y —6 =0 = 12x + 3y +3xy’ +4yy + 17y’ =0 = y'3x +4y + 17) = —12x — 3y

r . —12x—-3y .
=Y = Riayq17
(a) the slope of the tangent linem = y'| _, , = %‘ =% = the tangent lineisy — 0= $(x + 1)
: 10
6 6
(b) thenormallineisy—O:—%(x—i—1) = y:—%x—%

34. x2—\/§xy+2y2:5:>2x—\/§xy/—\/§y+4yy/:0:>y’(4}’*\/§x):\/§3’*2xéy/zilf_y_\/%i;

(a) the slope of the tangent line m = y’| (v32) = ﬁ'\}%ﬁ

=0 = thetangentlineisy =2
(v32) g y

(b) the normal line is x = \/§

35. 2xy+wsiny =21 = 2xy +2y+w(cosy)y =0 = y(2x +mcosy) = -2y = y’:ﬁ;
. -2 . L
(a) the slope of the tangent linem = y'| ., = m w2 = the tangent line is
y—5=—5&-1) = y=—-3x+m7
(b) thenormallineisy—%:%(x—l) = y:%x—%-i-%

36. x sin 2y =y cos 2x = x(cos 2y)2y’ + sin 2y = —2y sin 2x +y’ cos 2x = y'(2x cos 2y — cos 2x)

sin 2y 42y sin 2x
cos 2x —2x cos 2y

= —sin 2y — 2y sin2x = y' =

(a) the slope of the tangent line m = y’| 15 = sindy 42y sin2x = % =2 = the tangent line is

) cos 2x — 2x cos 2y (5.3) T
12 =

y—%:Z(x—%) = y=2x
(b) thenormallineisy—%:—%(x—z) = y=-—3X+3%
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37.

38.

39.

40.

41.

42.

43.

44,

y=2sin(rx—y)=y =2[cos(mx —y)]- (m —y) =y [l +2cos(mx —y)| =2mcos(mx —y) =y =

(a)

(b)
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2mcos(mx—y) .
14+2cos(mx—y)

27 cos (X —y)

the slope of the tangent line m = y'| ;4 = T 2cosmsy)

=271 => the tangent line is
a0
y—0=2n(x—-1) = y=2mx—27
1

the normal lineisy — 0= —5- (x — 1) = y=— & + 5

x2cos’y —siny =0 = x2(2 cos y)(—siny)y' +2x cos’y —y' cosy =0 = y'[-2x%cosy siny — cos Y]

()
(b)

o 2 / 2x cos’y .
2x cos y =y = 2x2cosysiny—+cosy ’
2% cos’y

. /
the slope of the tangent line m = y’| 0m = 2T cosysiny Feosy

=0 = thetangentlineisy =7
©m

the normal line is x = 0

Solving x> +xy +y?’=7andy=0 = x*=7 = x = :l:ﬁ = (—ﬁ,O) and (ﬁ,O) are the points where the

curve crosses the x-axis. Now x2 +xy +y? =7 = 2x +y+xy +2yy =0 = (x+2y)y = —2x—y

=y =- i":zi = m=— iszi = the slope at (—\/7,0) ism=— 12\/\/7—5 = —2 and the slope at (ﬁ,O) is
m=— %77 = —2. Since the slope is —2 in each case, the corresponding tangents must be parallel.
Xxy+2x—y=0 = x g—i +y+2-—- g—i =0 = g—i = ¥f§;theslopeoftheline2x+y:Ois —2. In order to be

parallel, the normal lines must also have slope of —2. Since a normal is perpendicular to a tangent, the slope of

1

the tangent is % . Therefore, % =5 = 2y+4=1—-x = x = —3—2y. Substituting in the original equation,

2

V(=3 -2y)+2(-3-2y)—-y=0 = y’+4y+3=0 = y=—-3ory=—1. Ify = —3, thenx = 3 and
y+3=-2(x—-3) = y=-2x+3. fy=—1,thenx=—-landy+1=-2(x+1) = y=-2x—-3.

yl=y —x? = 4’y =2yy' - 2x = 2(2y’ —y)y = —2x = y' = ;75 the slope of the tangent line at
3 3 v3 L . . 3

(%,7) 1S 3 2y;‘ (“73“7?) = P = %j% = ﬁ = —1; the slope of the tangent line at (T?%)

. 3 2V/3

is S5 :%iézj:\/g

V2-x)=x3 = 2yYQ2 - x)+yi(~-1)=3x* = y = zyyz(;ri’f) ; the slope of the tangent line is m = i‘/;(;fx;)
n
% =2 = the tangent lineisy — 1 =2(x — 1) = y = 2x — 1; the normal lineisy — 1 = f%(xf =y= f%er%

yi—dy? =x1—9x% = 4y3y —8yy =4x3 —18x = y (4y* —8y) =4x> — 18x = y = 40— 18x _ 20— 9x

X3+y—0xy=0 = 32 +3y?y —9xy' =9y =0 = y 3y’ - 9%x) =9y —3x*> = y =

(a)
(b)

(©)

— x(@2¢-9) _ m; (—3,2): m= U89 — %7 :(—3,-2): m= %7 13,2 m=2;3,-2): m=—2%

T4y -8y T2yt —dy

8 8

y (2y? —4) 28-4)

9y —3x*> __ 3y—x?
3y2—-9x T y2—3x

/ _ 5 ! _ 4.
Yy =7andy|,, =3

2

N\ 3 ,
y=0 = ig:;ﬁ:o =3y—-x*=0=y=% = X3—|—(§) —9x("3—'):0 = x0-54x3 =0

= xX*(x*-54)=0 = x=00orx=*/54=3 3\/5 = there is a horizontal tangent at x = 3 /2. To find the

corresponding y-value, we will use part (c).
2 3
3—;:0:>§y:i§:0:>y2—3x:0:>y:i 3x;y:\/3x:>x3+<\/3x> —-9xy/3x=0

= X~ 6\/3x2=0= x3? (x3/2—6\/§) —0 = xX*2=00rx3? =63 = x=0o0rx = /108 = 3 /4.

Since the equation x* + y3 — 9xy = 0 is symmetric in x and y, the graph is symmetric about the line y = x. That is, if

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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46.

47.

48.

49.
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(a,b) is a point on the folium, then so is (b, a). Moreover, if y'| ., =m, theny’| . = & . Thus, if the folium has a
horizontal tangent at (a, b), it has a vertical tangent at (b, a) so one might expect that with a horizontal tangent at

X = v/54 and a vertical tangent at x = 3 */4, the points of tangency are (\3/ 54,3 \3/1) and (3 NZRY, 54),

respectively. One can check that these points do satisfy the equation x* + y* — 9xy = 0.

X2 4+2xy —3y? =0=2x+2xy + 2y — 6yy =0 = y(2x — 6y) = —2x -2y =y = 3xy+ - = the slope of the tangent
linem =y'[ = ;er_yX = 1 = the equation of the normal line at (1,1)isy — 1l = —1(x — 1) = y = —x + 2. To find
: an

where the normal line intersects the curve we substitute into its equation: x> + 2x(2 — x) — 3(2 — x)?> = 0

S x24+4x -2 34 —4x+x)=0= 42+ 16x—12=0=x>-4x+3=0= x—3)x—-1)=0

= x=3andy = —x + 2 = —1. Therefore, the normal to the curve at (1, 1) intersects the curve at the point (3, —1).
Note that it also intersects the curve at (1, 1).

Let p and q be integers with q > 0 and suppose that y = \/xP = xP/9. Then y¢ = xP. Since p and q are integers and

~1 _1
assuming y is a differentiable function of x, & (y9) = L (xP) = qyd 'L =pxP ! = L = P20 =P . &

@yt ' T g y1 !
— b, x' _p x! _p yp-1-(p—p/a) — P . x(p/a)-1
q (xp/q)qfl q xP-p/d q q
Vv =x = g—z = 5-. If anormal is drawn from (a, 0) to (x;, y1) on the curve its slope satisfies yl = -2y
=y = —2y1(x1 —a)ora=x; + 5 . Since x; 0 on the curve, we must have that a 5 . By symmetry, the two
points on the parabola are (x, /1) and (x1, —/x1) . For the normal to be perpendicular, (Xl—\/i) (T@) =1
2
> gy =l xu=a-x) = x= (xi+1-x))" = xy=1andy, = + 1. Therefore, (1, + 1) anda= 3.
2 2 ’_ ! _ 2x ! _ 2x _ 2 ! _ 2x __ 2.
&0 43y =5 = &x+oyy =0=y=—3 =V, ,=—% (ll)f—gandy|(1.71)f—§ M & ; also,
2 _ (3 _ 12,2 _3 3 3 __3
V=x3 = 2yy =3x) = y = % = Y|y = % 2 andy|(1 o % At £ Therefore the

tangents to the curves are perpendicular at (1, 1) and (1, —1) (i.e., the curves are orthogonal at these two points of

intersection).

(@ X*+y?=4,x>=3y’= 0GBy )+y’=d=y’ =1=y= :tl.Ify:1:>x2+(1)2:4=>x =
Sx=+3.Ify=—1=>x2+ (-1 =4=>x2=3=>x= +./3.

X2 +y _4:>2X+2ydy_0 :>m1:g_i:_ and x?2 —3y :>2x—6yd = mp =

F=
At(\/g,l):mlzg—i:—éz—\/gandmz gi—%:‘?jmpmg:(—\/g) ?):—1

At \/g,fl):mlzg—i:fgzﬁandmz gi:%:—éémpmz:(\/g)(f%):fl
,1>:m1:d—y:f(_\/§):\/gandmzzﬂ:;—ﬁ:féémpmz:(\/5)(—73):—1

\/3 dx 1 dx 1)
At 7\/5771) m]:diizi(z_‘f):,\/gandmz—%:S(f))_?@m] mp, = (— 3)(73>:fl
(b)x=1—y2»x=%y2:'(%y2)=1—y2:'yzzéi'yziéIfyzé;‘le_<73>2:%“
:—éﬁx—l—(_%)zzix:l—y2:>1:—2y%:>m1:d_i:_z_andxz%y2
Sl=3ygom=g =5

At(i, f%):ml:d—i:fm:%andmzzj—i:m:f\%éml-mzz(—3)(7%>271
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2 2 2
0.y = bty $ o —tamdoyk =3 s =¥ o (D(¥) =155y (5) =
:>%4:X3:>X4—4X3=0:>X3(X—4)=0:>X=001‘X=4.IfX=O:>y=((;)Zzoal’ld(—%)<32—);z)=—lis

indeterminant at (0,0). If x =4 =y = (4) =8.At(4,8),y=—ix+b=>8=—-4) +b=b=2.

51 xy? +x’y =6 = X(By2 dy)-l—yg—i—x2 dy+2Xy—0 = %(37(}’2'1‘?(2):_}’3_27‘)’ = %:%

VA2 also, xyS + x2y = 6 = x (3y?) + 3d"—|—x +y(2xg—;):0 = j—;(y?H—ny):—3><y2—x2

vay~ T
= g—; = — 3y)§y+42‘x?; thus d" y appears to equal & ¥ . The two different treatments view the graphs as functions

symmetric across the line y = X, so their slopes are reciprocals of one another at the corresponding points
(a,b) and (b, a).

52. x3 +y? =sin’y = 3x%2+2y di—(2smy)(cosy) o y(2y—2sinycosy):—3x2 = %:%

— 3x2

T 2sinycosy—2y

appears to equal - . The two different treatments view the graphs as functions symmetric across the line
&

y = X so their slopes are reciprocals of one another at the corresponding points (a, b) and (b, a).

. _ 2.d dx __ 2sinycosy—2y ., d
;also, x® +y? =sin’y = 3x X+2y—251nycosy = ﬁ—T,thusﬁ

53-60. Example CAS commands:

Maple:
ql = x"3-x*y+y"3 =7,
= [x=2,y=1];
pl :=implicitplot( q1, x=-3..3, y=-3..3 ):
pl;

eval(ql, pt);
q2 :=implicitdiff( q1, y, x );
m :=eval( g2, pt);
tan_line :=y = 1 + m*(x-2);
p2 := implicitplot( tan_line, x=-5..5, y=-5..5, color=green ):
p3 := pointplot( eval([Xx,y],pt), color=blue ):
display( [p1,p2,p3], ="Section 3.7 #57(c)" );
Mathematica: (functions and x0 may vary):
Note use of double equal sign (logic statement) in definition of eqn and tanline.
<<Graphics' ImplicitPlot™
Clear[x, y]
{x0, yO}={1, n/4};
eqn=x + Tan[y/x]==2;
ImplicitPlot[eqn,{ X, X0 — 3, x0 4+ 3},{y, yO — 3, yO + 3}]
eqn/.{x — x0,y — y0}
eqn/.{ y — y[x]}
D[%, x]
Solve[%, y'[x]]
slope=y'[x]/.First[%]
m=slope/.{x — x0, y[x] — y0}
tanline=y==y0 4+ m (x — x0)
ImplicitPlot[ {eqn, tanline}, {x, x0 — 3, x0 + 3},{y, yO — 3, yO + 3}]
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3.8 RELATED RATES

10.

11.

14.

15.

16.

A=7m? =
S =4mr? =

_ dx _
y=5x, 3 =

dA _ dr
rTi 27r dat

ds

- dr
dt 8 dt

2:>%Z5%:>‘31—¥:5(2):10

d; d
2x+3y=12,¢=-2=2843% =0=28 4 3(-2)=0= & =3

y:

x2

dx

> dt

> dt dt

3= % = x%;whenx: —-1= % =2(=1)(3) = -6

x=y —y, ¥ =52 & 328 Bypeny — 2 = &= 3(2)%(5) — (5) =55

dt de’

X2 +y? =25 %= 2= 2x& 42y ¥ = 0;whenx =3andy = —4 = 2(3)(-2) +2(-4) L =0=> L = -3

X2yl =4 W — : :>3X2yzg+2xy3% =0;whenx =2= (2)°y* = £ = y = L. Thus

27 dt dt 27 3
2 2 3 dx X
327 () () +2(5) R =0=G=-3
L= B 7 dx _ 1dy73 dL _ 1 x & 4 o dy) _ xE4yd h —5andy = 12
= X+y,m—7,a— jE_z/xz_‘_yz XE+ Ya ) = /x2+y2,wenx— andy =
L _ 9D +d29)(3) _ 31
dt (5>2+<12)2 13

rh?H V=12, 8 =g 8 = 3o Ay pgds 4 32 gyhenr=3ands=1= (3) + (1)’ +V =12=v=2

’ dt > dt

=4+2(1)(-3)+32) % =0=> & =1

de

(@ S=6x%, ¢ =50 = 8 = 12x ¥ whenx =3 = $ =12(3)(—5) = —180 =
) V=x3, & = 50 o &V _ 3328 yhep x =3 = &V = 3(3)%(—5) = —135 I

. (a)

()

(a)
(©)

(a)
(©)
(d

. S=06x2
= & =3(3)°(2) =54 I

> dt

& _7pi o 8 _x B 57 = 12@3) B 5 &Koy o3 o V308 whenx =3

sec dt sec? dat

sec

V=nr’h = ¥ =m? (b) V=mr’h = & =2narh §

dt dt

V=mr*h = & =m? @ +2mrh &

dt

— 1.2 dv. _ 1.2 dh — 1.2 v _ 2 dr
V=g3nr'h = =377 g (b) V=3mrh = g = 57rh §
av. _ 1.2 dh , 2 dr
G = 3T g T smh G
av _ a _ 1
T = 1 volt/sec (b) T ——gamp/sec
av _ di dR dR _ 1 (dv_pd dR _ 1 (dv _ Vv d
I_R(dt)"'l(dt) = dt_I(dt Rdl) = dt_I(dl Idt)
dR _ 17y _12(_1)] = (L 3 iS i i
T =3 [1 5 ( 3)] = (2) (3) = 5 ohms/sec, R is increasing

— 2 dP __ 12 dR di
() P=RP = ® 2R 4 oppd

(D) P=RIZ = 0= P& 4 oppd & _ ka2

Da _ 2pda

a dt 2 dt 2 d P d
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1/2
@ s=VFFy=(+y)" = = o b
1/2 d
(b) s= VX2+Y2:(X2+YZ)/ = %: \/x2x+y2 (il_)t(+\/x2y+y2 @t
© s=vxX2+y? = 2=x>+y? = 25 B =2x B 4oy W o . 0=2x L oy P o o VO

@ s=/x2+y2+22 = 2=x"+y*+2> = 2s L =x B 2y ¥ 27 &

ds _ X dx y dy z dz
= dt — \/x2+y2+22 dt + \/x2+y2+zz dt + /x2+y2+22 dt
ds y dy z dz

: dx __ _
(b) From part (a) with . =0 = § = T T d + STy T d

(c¢) From part (a) with § =0 = O:ZX%—’E—i—Zy‘;—{—i—ZZ% = %—{—%%—{—%%:0

() A=3absing = % =1labcosd ¢ (b) A=Zabsing = % =1labcosd ¥ + lbsing &

=1 i da _ 1 dd | 1y g da 4 1, db
(c) A=g3absinf = ¢ =gabcost G +5bsind F + jasinf F

Given A = 7r?, § = 0.01 cm/sec, and r = 50 cm. Since & = 27t | then 4 o = 2m(50) (155) = ™ cm*/min.

Given %f = —2 cm/sec, “}T‘:’ =2cm/sec, { = 12cmand w = 5 cm.

(a) A=tw = ‘fi—‘? =/ %—V[V +w j—f = % = 12(2) + 5(—2) = 14 cm?/sec, increasing

(b) P=20+2w = € =2d 42 _52)+2(2) =0 cm/sec, constant

/ 12 12 0w ey
© D=+/W+ 0= (w?+ )" = D - Lw+ )7 (2w & 420 &) #%:W%Mg
_ 001 _

14 :
— = reasin
5T 5 cm/sec, decreasing

— v _ dx dy dz av
(a) V=xyz = G =YZ g txZz g Xy E = G

=321 + @2)(=2) + @3)(1) = 2 m?/sec
(b) S=2xy+2xz+2yz = § =Qy+22) &+ 2x+22) § +2x+2y) &

= Rl s = 0D + (12)(=2) + (14)(1) = 0 m*/sec

dt | 432

1/2
(© L=xX2+y +22= (X +y* +27) 2= g_f = «/x2+xy2+zz (31_): + \/x2+yy2+z2 (c% + \/x2+zy2+zz %
de _ 4 3 2 _
= &)= (ﬁ) (1) + (ﬁ) (—2) + (ﬁ) (1) = 0 m/sec

| 4.3.2)

dx

Given: T = 5 ft/sec, the ladder is 13 ft long, and x = 12, y = 5 at the instant of time
(a) Since x* +y? =169 = % = — § % = — ('5—2) (5) = —12 ft/sec, the ladder is sliding down the wall

(b) The area of the triangle formed by the ladder and wallsis A = 1 xy = 9 = (1) (x iy ‘(’1—’:) . The area
is changing at § [12(—12) 4 5(5)] = — 12 = —59.5 ft*/sec.

X . de 1 dx 4 _ 1 dx (1 _
(© cosf=% = —sinf P =% = L=—51-%=_(1)(5=—1rad/sec

Pyl o d oyl s (x oy j‘i—{) = & = _L_[5(—442) + 12(-481)] = 614 knots
Let s represent the distance between the girl and the kite and x represents the horizontal distance between the girl and kite

=7 = (300 +x* = § =1 % = XD = 20 fi/scc.

When the diameter is 3.8 in., the radius is 1.9 in. and % = L in/min. AlsoV = 6712 = ¥ = 127t %

~ 3000 dt
= ‘fj—\[' = 127(1.9) ( = 0.00767. The volume is changing at about 0.0239 in3/min.

00)
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_ 3r __4h 1 h\2y, _ 167rh3 dv __ 167h* dh
27. V=3m’h,h=3@2n =% = r=% = V=17()h=1G" > & =19 ¢
(a) E|h=4:( W42)(10) W~01119m/sec_11 19crn/sec
b)) r=2 = §=3F=31(2>) = 5= ~0.1492 m/sec = 14.92 cm/sec

2 15h _ 1. (15h\2y. _ 757h3 dv __ 2257h% dh dh _ A=50 -8
28. (a) V= gﬂ'rhandr—T = V‘?”(T) h=2 = T =70 & ™ Gtlies = 25:67 = 257
~ —0.0113 m/min = —1.13 cm/min

b) r=58 = F=0& = & = (5)(52) =7t =~ —0.0849 m/sec = —8.49 cm/sec

29. (a) V=2y’3R—-y) = =13 [2y(3R—y)+y2(—1)] & & _[7(6Ry - 3y?)] ¥ = aR=13and
y = 8 we have dy = 24=(—6) = 52X m/min

(b) The hemlsphere is on the circle r? + (13 —y)? = 169 = r = \/26y —y?m

_ 2\1/2 ar _ 1 2y—1/2 _ 13-y d dr _ _13-38 —1
© r=(26y—y)'" = §=1026y—y) "26-20)F > §= Ty A T dilyes = \/m(m)
288 m/min
30. If V=3 7rr S = 47r?, and dv = kS = 4kmr?, then = 4qr? % = 4knr? = 4ar? 3{ = E =k, a constant.
Therefore, the radius is increasing at a constant rate.
31. If V= $m®, r =5, and & = 1007 ft*/min, then §f = 4xr® § = § = 1ft/min. Then S = 47mr? = ¢

= 87rr a = 8m(5)(1) = 4O7r ft?/min, the rate at Wthh the surface area is increasing.

32. Let s represent the length of the rope and x the horizontal distance of the boat from the dock.

(a) Wehaves? =x*>+36 = & =3 & T &8 | Therefore, the boat is approaching the dock at

dt x dt
dx _
10 m( 2) = —2.5 ft/sec.
(b) cos@zg = —sde—ef—%% = i_?*ru?ne g{ Thus,rle,x:S,andsinQ:%
de
= 3_102(1&0) (—2) = %rad/sec

33. Let s represent the distance between the bicycle and balloon, h the height of the balloon and x the horizontal
distance between the balloon and the bicycle The relationship between the variables is s> = h? + x>
= $=1hP+x%) = §=5I68(1)+51(17)] = 11 ft/sec.

34. (a) Leth be the height of the coffee in the pot. Since the radius of the pot is 3, the volume of the coffee is

V=09rh = 4 =97 = therate the coffee is rising is 3 = 5- G = 5, in/min.

(b) Let h be the height of the coffee in the pot. From the figure, the radius of the filter r = g = V= % nr’h
= ® | the volume of the filter. The rate the coffee is falling is & = =L & -2 (-10)=—2 in/min.

35.y=QD ! = § =D F-QD? L = £ (0) - F%(-2) = {& L/min = increasing about 0.2772 L/min

36. Let P(x,y) represent a point on the curve y = x> and @ the angle of inclination of a line containing P and the
origin. Consequently, tanf =¥ = tanf =% =x = sec?§ ¥ =& - B _ (29 & Gince & — 10 m/sec

2 2
X — 3 =1L wehave dt| = 1 rad/sec.

2 _
and cos® 0| _, = Vol T e T 00
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The distance from the origin is s = y/x2 + y? and we wish to find % cin = % (x2+ y2)71/2 (2X ‘(‘i—’t‘ + 2y %)
’ (5,12)

_ ®ED+A=S

= mra 5 m/sec

Let s = distance of car from foot of perpendicular in the textbook diagram = tan 0 = 55 = sec? % = % %
= ¥ = C‘l’g;‘g & & — _264and 0 =0 = % = —2rad/sec. A half second later the car has traveled 132 ft

1

right of the perpendicular = |0 = 7, cos?f = % and % = 264 (since s increases) = ‘(ij—f = % (264) = 1 rad/sec.
Lets = 16t2 represent the distance the ball has fallen, h the L

. . Ballattime t=0
distance between the ball and the ground, and I the distance

between the shadow and the point directly beneath the ball. 1/2 sec later

Accordingly, s + h = 50 and since the triangle LOQ and = P
triangle PRQ are similar we have I = % = h =50 — 16>
- 30 Q
_ 30(50—16t") _ 1500 _ dl _ 1500

and I = 5555168y = Tor — 30 = & = — 50 % R

= 9. = —1500 ft/sec.
When x represents the length of the shadow, then tan 6 = 8)(—0 = sec’f % = — % ‘é—’t‘ = ‘é—’t‘ = ”‘2830“29 ‘(jj—f . We are

i o _ o_ 3m i — -3 dx| _ [=x?sec’d df — 3z i
given that 5 = 0.27° = 5000 rad/min. Atx = 60, cos § = s = | = % pr (= gi amsec0=1) =1 ft/min
~ 0.589 ft/min ~ 7.1 in./min.
The volume of theiceis V=478 — $ 743 = & =d4n? & = & = =3 in./min when & = —10 in®/min, the

. . . . 5 . . . _ 2 dS di ds _ -5
thickness of the ice is decreasing at 73— in/min. The surface area is S = 47r* = ¢ =8nr g = G| _ =487 (m)

= — 13—0 in?/min, the outer surface area of the ice is decreasing at '3—0 in?/min.

Let s represent the horizontal distance between the car and plane while r is the line-of-sight distance between the car and

plane = 9+s* =1’ = % = \/rer % = % = ﬁ (—160) = —200 mph =- speed of plane + speed of car

= 200 mph =- the speed of the car is 80 mph.

Let x represent distance of the player from second base and s the distance to third base. Then % = —16 ft/sec
(@ s> =x>+8100 = 2s $ =2x & = $ =3 & When the player is 30 ft from first base, x = 60
= s=30y/13and & = 30% (—16) = % ~ —8.875 ft/sec
(b) sinf; = % = cos 6 % = —95—9 . g—i = % = _522)291 . % = —% - %. Therefore,x:60ands:30\/E
= & = —7(30\/91_%(60) . (%) =3 radfsec;cos 0 = 2 = —sinfy P2 = 0. & - b _ Ty - ¢
= 3_—?( - %. Therefore, x = 60 and s = 30\/E = dd—‘gf = m . (\_/—31—23) = —% rad/sec.
© @=—vas &=y ) (H)=02) (%) =(vhw) & = lin ¢
= Jim (~ i) (19) = § radisee; = 3 - = (2) (3) () = (2) ()
= (%% & = Jim 9 — 1 rad/sec
Let a represent the distance between point O and ship A, b the distance between point O and ship B, and D the distance

between the ships. By the Law of Cosines, D* = a® + b? — 2abcos 120° = 2 = L [2a & 4 2b P +a P +b £].

Whena =35, % = 14,b =3, and =21, then Y = 42 where D = 7. The ships are moving 42 = 29.5 knots apart.
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3.9 LINEARIZATION AND DIFFERENTIALS

10.

11.

12.

13.

14.

15.

16.

fx)=x3—2x+3 = fl(x) =3x2 =2 = LX) =f'Q)x —2) +f(2) = 10(x —2) +7 = L(x) = 10x — 13 atx = 2

) =vVx2+9= (249" = )= (3) (2 +9) 20 = 72 = L =1 +4) +1(-4)
—%(x+4)+5:>L(x)=—%x+5at —4

fx)=x+1 = ff@X=1-x2 = LR =D+ Dx-1D=2+0x—1)=2

fx) =x'? = () = 55 = L) =1(=8)(x = (=8)) +f(—8) = 5 (x +8) =2 = L(x) = 5x— }
f(x) = tanx = f'(x) = sec’x = L(x) = f(7) + f'(m)(x = 7) =0+ l(x — 1) =x — 7

() f(x) =sinx = f’(x) = cosx = L(x) = (0) + f'(

(b) f(x) = cosx = f'(x) = —sinx = L(x) = f(0) + f'(0)(x —0) = 1 = L
(©) f(x) =tanx = f'(x) = sec’x = L(x) = (0) + f'(0)(x — 0) = x = L(x) = x

fi(x) = x> +2x = f'(x) =2x+2 = L(&x) = f/(0)(x — 0) + f(0) = 2(x —0) + 0 = L(x) = 2xatx =0

fx)=x" = ff®)=-x2 = LE='(Dx-D+f()=-Dx—-D+1 = Lx) =-—x+2atx =1

f(x) =2x2 +4x —3 = f/(x) =4x+4 = LX) = f(-Dx+ D) +f(=1) =0x + 1)+ (=5) = L(x) = —5atx = —1
fx)=1+x = X =1 = L) =f')(x -8 +f8) =1(x -8 +9 = Lx) =x+latx =8

fx)=yx=x% = @ =(1)x23 = L =@ —-8)+fB8) =5 x -8 +2 = Lx)= Lx+%atx =8

f00) = 25 = o= IR0 — o = L) = f'(Dx - D+f) = (x— D+

= L(x):%x—i—%atx:l

f/(x) = k(1 +x)*"'. We have f(0) = 1 and '(0) = k. L(x) = f(0) + "(0)(x — 0) = 1 + k(x — 0) = 1 + kx

(@ fx)=(1-x)°= [1+ (—x)]6 ~1+46(—x)=1-6x
b) f(x) = 2= =2[1+ (—x)] " ~2[1+ (~1)(—x)] =2+ 2x
(c) f(x):(l—l—x)*lﬂzl—l—(—% x=1-3
2\ 1/ 2

(d) f(x):\/2—|—x2:\/§(I+§)12z\/§(1+%"7):\/§ 1+%)
© 100 = (44301 = V314 3)' % 0 (14 135) = 0P (14 3)

L N2B 1 \123 2 1 2
® f(X) - (1 B 2+x) |:1+( 2+x):| ~1+ 5(72+x) =1- 6+ 3x

(@) (1.0002)%0 = (1 + 0.0002)° ~ 1 + 50(0.0002) = 1 + .01 = 1.01
(b) v/1.009 = (1 4 0.009)"/3 ~ 1+ (1) (0.009) = 1 +0.003 = 1.003

fx) = v/x+1+sinx = (x+ D2 +sinx = f'(x) = (3) x+ D7Y2 4+ cosx = Li(x) = f/(0)(x — 0) + £(0)
= %(X —0)+1 = Lix) = %X + 1, the linearization of f(x); g(x) = v/x+ 1 = (x + D2 = ¢'(x)
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= E+D? = Lx)=g0)x-0+g0) =1x—-0+1 = L(x) = }x+ 1, the linearization of g(x);
h(x) = sinx = h(X) =cosx = L,(x) =h(0)(x —0)+h(0) = (1)(x —0) +0 = L,(x) = x, the linearization of

h(x). L{(x) = L,(x) + L,(x) implies that the linearization of a sum is equal to the sum of the linearizations.

y=x}-3y/x=x"-3x1/2 = dy=(3x> - IxV?) dx = dy = (3X 77)

y=xVT=x2 =x(1=x)"" = dy= () (1=x)" 400 (3) (1 =) (=20] ax
=(1-x2) (1 = x%) —x? dx = U222 gx

1-x2

o _ (@(1+x) - 20Cx) 2o
Y=t = dy= ( (I +x0)° ) dx = T dx

o 2Yx L (xR X)) -2 (5x
y_3(1+ﬁ) _3(1+X1’2) = dy_( 9(1+X1”)

_ 1
= Y= R

v\w
N—
o
bl
w
=

=
4
w
w

2y32 4 xy —x=0 = 3y"2dy+ydx+xdy—dx =0 = (3y"/?+x)dy=(1—-y)dx = dy= 3ly+

xy? —4x*? —y =0 = y?dx +2xydy — 6x//2dx —dy =0 = (2xy — 1) dy = (6x"/2 —y?) dx

= dy765£_¥ dx

y = sin (Sﬁ) = sin (5x1/2) = dy = (cos (5x1/2)) (% X_l/z) dx = dy = SCOS\(}\/_)
y = cos (x?) = dy = [—sin (x?)] (2x) dx = —2x sin (x?) dx

y =4tan (";) = dy=4 (8602 (%3)) (x?) dx = dy = 4x? sec? ("3—3> dx

y =sec(x? — 1) = dy = [sec (x? — 1) tan (x? — 1)] (2x) dx = 2x [sec (x? — 1) tan (x* — 1)] dx

y =3csc (1 —2y/x) =3csc(1—2x2) = dy =3 (—csc (1 —2x"/2)) cot (1 — 2x1/2) (—x71/2) dx

= dy—\[csc(l—Z\/_)cot(l—Z\/)dx

y = 2 cot (ﬁ) =2 cot (X’I/Q) = dy = —2 csc? (x’l/Q) (— %) ( ’3/2) dx = dy = \F csc (%)

fx)=x>2+2x,x0=1,dx =0.1 = f'(x) =2x+2

() Af = f(xg + dx) — f(xo) = f(1.1) — f(1) = 3.41 — 3 = 0.41
(b) df = 1f'(xg)dx = [2(1) +2](0.1) = 0.4

(©) |Af— df| = |0.41 — 0.4] = 0.01

fx)=2x>+4x—-3,x0=—-1,dx=0.1 = f'x) =4x+4
(a) Af=f(xp+dx) —f(xg) =1f(—.9) — f(—1) = .02

(b) df =1f'(xg)dx = [4(=1)+4](.1) =0

(c) |Af—df| =].02-0]|=.02
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31 f(x) =x*—x,%x=1,dx =0.1 = f/x)=3x2-1
(a) Af = f(xg + dx) — f(xg) = f(1.1) — f(1) = 231
(b) df = f'(xp)dx = [3(1)2 — 1](.1) = 2
(c) |Af—df| =231 —.2| =.031

32. f{x)=x% xo=1,dx =0.1 = f'(x) =4x°
(@) Af = f(xo + dx) — f(xo) = f(1.1) — f(1) = 4641
(b) df = f'(xo) dx = 4(1)}(.1) = 4
(©) |Af— df| = |.4641 — 4| = 0641

33. f(x) =x"1, % =05,dx=01 = f'x) = —x2
(@) Af = f(xo + dx) — f(xo) = f(.6) — f(.5) = — %
(b) df =f'(xo)dx = (—4) (§5) = — 2
© |Af—df|=|-1+2]=1L
34, f(x) =x3—2x+3,%x=2,dx=0.1 = f'(x)=3x> -2
(@) Af = f(xg + dx) — f(xo) = f(2.1) — f(2) = 1.061
(b) df = f'(x)dx = (10)(0.10) = 1
(c) |Af—df| =|1.061 — 1| = .061

35. V=134md = dV =4nrldr 36. V=x3 = dV =3x%dx

37. S=6x% = dS = 12xq dx

1/2 -1/2

38. S =mry/r2 +h? = 7r (2 + h2)1/2, h constant = % = 7 (r? 4+ h?)

2 2 2 2 2
= &8 _r@e) et g - T25HN) g h constant

+7r -1 (r? 4+ h?)

39. V = 7rh, height constant = dV = 2zrph dr 40. S =2nrh = dS = 2nrdh

41. Givenr=2m,dr = .02 m
(@) A=’ = dA =27rdr =27(2)(.02) = .087 m?
(b) (4&) (100%) = 2%

42. C=2mranddC =2in. = dC=2rdr = dr=1 = the diameter grew about 2 in.; A = 7r* = dA = 27rdr
=27(5) (1) = 10in?

43. The volume of a cylinder is V = mr’h. When h is held fixed, we have %_\: = 2mrh, and so dV = 27rh dr. For h = 30 in.,
r = 6 in., and dr = 0.5 in., the volume of the material in the shell is approximately dV = 2zrh dr = 27(6)(30)(0.5)
= 1807 ~ 565.5in’.

44. Let § = angle of elevation and h = height of building. Then h = 30tan 6, so dh = 30sec?¢ df. We want |dh| < 0.04h,
which gives: [30sec?d df| < 0.04|30tan 6] = —L|df| < 2288 — 49| < 0.04sin 6 cos § = |d6]| < 0.04sin 22 cos 22

cos26 cos 0 12

= 0.01 radian. The angle should be measured with an error of less than 0.01 radian (or approximatley 0.57 degrees),
which is a percentage error of approximately 0.76%.
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dr
The percentage error in the radius is @ x 100 < 2%.

dc
(a) Since C =271 = dC = 27r ;- The percentage error in calculating the circle's circumference is ( g) x 100

= ) )><100f(‘“) % 100 < 2%.

2'rr

(b) Since A =rmr? = 9 = 27rr .- The percentage error in calculating the circle's area is given by =& &) x 100

= brg) )><100—2( 1) ><100§2(2%):4%.

dx
The percentage error in the edge of the cube is M x 100 < 0.5%.

(a) Since S = 6x> = d = 12x i - The percentage error in the cube's surface area is (‘“) x 100 = (12)( ‘“) x 100
=20 100 < 2(0.5%) = 1%

(b) Since V =x* = & = 3x?%_ The percentage error in the cube's volume 1s( 1) 100 = (x—‘“) x 100
=304« 100 < 3(0.5%) = 1.5%

V = 7h® = dV = 37h? dh; recall that AV & dV. Then |AV] < (1%)(V) = LD - |qy| < LD

= |37th dh| < (1) "h W) |dh| < 55 h = (3 %) h. Therefore the greatest tolerated error in the measurement
of his 5 %.

(a) Let D, represent the interior diameter. Then V = 7r*h = 7 ( ) h=""amndh=10 = V= SﬂDQ =
dV = 57D, dD;. Recall that AV & dV. We want |AV| < (1%)(V) = |dV| < (5&) (@) = 74_'3?

= 57D, dD; < 71—?)7 = % < 200. The inside diameter must be measured to within 0.5%.

(b) Let D, represent the exterior diameter, h the height and S the area of the painted surface. S = 7D.h = dS = whdD,
= % = %. Thus for small changes in exterior diameter, the approximate percentage change in the exterior diameter

is equal to the approximate percentage change in the area painted, and to estimate the amount of paint required to
within 5%, the tanks's exterior diameter must be measured to within 5%.

GivenD =100cm,dD = 1cm,V =37 (g)3 = o gv= Z2D?dD = 7 (100)*(1) = %. Then &Y (100%)

6
10tx 1007
= {@}(102%): {@}%:3%

6 6

V=t =4n(3)" =2 = dV = 2 dD; recall that AV & dV. Then |AV] < G%)V = () ()

_ D3 D3
=50 = AV < 5% =

”TDZ dD‘ < glo)g = [dD| < ;55 = (1%) D = the allowable percentage error in

measuring the diameter is 1%.

bdg
W:a%—gza—i—bg*1 = dW——bg*ng——b“lg = i‘xj = E (i?)) = (52) = 37.87, so a change of
(32)?

gravity on the moon has about 38 times the effect that a change of the same magnitude has on Earth.

1/2
@ T=2r (%) = dT =21/L (— L g?) dg = —m/Lg™2 dg
(b) If gincreases, then dg > 0 = dT < 0. The period T decreases and the clock ticks more frequently. Both
the pendulum speed and clock speed increase.

(¢) 0.001 = —7+/100 (98073/2) dg = dg ~ —0.977 cm/sec? => the new g ~ 979 cm/sec?
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Ex) =1f(x) —gx) = E(x) =f(x) —m(x —a) —c. ThenE(a) =0 = f(a) —m(a—a) —c =0 = c =f(a). Next

E(X) =0 = lim W=m&=a-c_ g - |y [O=@ 5 — 0 (since c = f(a))
X = a X—a

we calculate m: _lim = Jim, x—a
= f'(a) —m=0 = m=1{'(a). Therefore, g(x) = m(x — a) + ¢ = f'(a)(x — a) + f(a) is the linear approximation,

as claimed.

(a) i. Q(a) = f(a) implies that by = f(a).
ii. Since Q'(x) = by + 2by(x — a), Q'(a) = f’(a) implies that by = f’(a).
iii. Since Q”(x) = 2by, Q”(a) = f”(a) implies that b, = f”%
In summary, by = f(a), by = f’(a), and b, = @

®) f(x)=1—-x)"5Fx) =-1(1-x)2(=1) =1 —x)"%"x) = -2(1—x)3(-1)=2(1—-x)"*
Since f(0) = 1, f’(0) = 1, and £”(0) = 2, the coefficients are by = 1,b; = 1, by = % = 1. The quadratic
approximation is Q(x) = 1 + x + x>,

© As one zooms in, the two graphs quickly become
1 indistinguishable. They appear to be identical.
3
y=l4+x+x* , y=:
-2 -1 1 2 >
1 s
[-2.35, 2.35] by [-1.25, 3.25]
@ gx) =x"hg(x) = —1x~ @():2
Since g(1) = 1, g'(1) = —1, and g"(1) = 2, the coefficients are by = 1, b; = —1, by = 2 = 1. The quadratic
approximation is Q(x) = 1 — (x — 1) + (x — 1)
As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.
-1 1 2 *
\ 1

[-1.35, 3.35] by [-1.25, 3.25]
(& h(x) = (14" 0 (0) = 5(1+x) 70 (0) = — (1 +x) 7
Since h(0) = 1, h'(0) = 3, and h"(0) = —1 , the coefficients are by = 1, by = £, by = _7% = —%. The quadratic
approximation is Q(x) =1+ § — ’%

As one zooms in, the two graphs quickly become

i indistinguishable. They appear to be identical.
3
2 y=vl+x

(f) The linearization of any differentiable function u(x) at x = a is L(x) = u(a) + v'(a)(x — a) = by + by (x — a), where
by and by are the coefficients of the constant and linear terms of the quadratic approximation. Thus, the linearization
for f(x) at x = 0 is 1 + x; the linearization for g(x) at x = 1is 1 — (x — 1) or 2 — x; and the linearization for h(x) at
x=0is1+ 3.
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55-58. Example CAS commands:

Maple:
with(plots):
a=1:fi=x >XxA3+xXxA2—2%x;
plot(f(x), x=—1..2);
diff(f(x),x);
fp := unapply (”,x);
L:=x ->f(a) + fp(a)*(x — a);
plot({f(x), L(x)}, x=—1..2);
err:=x -> abs(f(x) — L(x));
plot(err(x), x=—1..2, title = #absolute error function#);
err(—1);

Mathematica: (function, x1, X2, and a may vary):
Clear[f, x]
{x1,x2} ={—1,2};a=1;
flx_]:=x> +x* — 2x
Plot[f[x], {x,x1,x2}]
lin[x_]=f[a] + f[a](x — a)
Plot[{f[x], lin[x]}, {x, x1,x2}]
err[x_]=Abs[f[x] — lin[x]]
Plot[err[x], {x,x1,x2}]
err//N

After reviewing the error function, plot the error function and epsilon for differing values of epsilon (eps) and delta (del)
eps =0.5; del =0.4
Plot[{err[x], eps},{x, a — del, a 4 del}]

CHAPTER 3 PRACTICE EXERCISES

1. y=x%-0.125x + 0.25x = % = 5x* - 0.25x + 0.25

2. y=3-07x+03x" = ¥ =-21x*+2.1x°

3. y=x3-3(x*+7%) = g—i =3x2 —3(2x + 0) = 3x% — 6x = 3x(x — 2)

4. y:X7+\/7x—ﬁ = %:7x6+ﬁ

5. y=x+1D?(x2+2x) = g—i =x+1D?2Q2x+2)+ (x2+2x) Qx + 1) = 2(x + D [(x + 1D? + x(x + 2)]
=2(x+ 1) (2x2 +4x + 1)

6. y=2x-54 -0 = L=2x-5H-DE-02(-D+@-x"12) =@ —x)2[2x - 5) + 2(4 — x)]
=34 —-x)2

7. y=(0>+sect+1)° = g—g:3(92+sec¢9+1)2(20+sect9tan9)

2 .
8.oy=(-1-s52—8) = §=2(-1-egt o 0 (sebd 5y (g el 8 (esc G cot§— )
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VA S (L e il ) B (V0 Y S S
1+t dt (1+\/) 2/t (1+ ) 2/t (1+ )
__1 ds (Vi- )0)71< )f -1
IO.S—\ﬂ71 ﬁa— (\/ ) —2%(%_1)2

2 dy

11. y:2tan2x—sec X = 3 :(4tanx)(seCQX)—(2secx)(secxtanx):2se02xtanx

_ 12 k24
12. y= g — 55 =0sc"x—2cscx = ¢

dy — (2 csc x)(—csc x cot X) — 2(— csc x cot X) = (2 csc x cot X)(1 — csc x)

13. s =cos’ (1 —20) = & =4cos® (1 — 20)(—sin (1 — 20))(—2) = 8 cos® (1 — 20) sin (1 — 20)

14, s =cof (3) = § =3eo? () (-ese? () () = oot (2) es? ()

15. s=(sect+tant)y® = % = 5(sec t + tan t)* (sec t tan t + sec® t) = 5(sec t)(sec t + tan t)°

16. s =csc® (1 —t+3t%) = £ =5csc! (1 —t+36%) (—cse (1 —t+3t%) cot (1 — t+ 3t%)) (—1 + 6t)
= —5(6t — 1) csc® (1 — t+ 3t%) cot (1 — t+ 3t?)
17. r=1/20sin6 = (20 sin 0)"? = § = 3 (20 sin )""/%(20 cos ¢ + 2 sin 0) = L3 EEME
18. r=20+/cos § = 26 (cos )/ = & =26 (1) (cos 6)"1/2(—sin 0) + 2(cos §)/? = _‘QCS;:; +2+4/cos

_ 2cosf—0sind
cos 0

19. r=sin /20 =sin(20)'/? = L = cos(20)'/% (1 (20)71/%(2)) = ﬁ—?

20. r:sin<9+\/9—|——1) = %:cos(9+\/m> (14_2\/%):22\/\5_21 cos(9—|—\/m>

21. y= %XQ csc £ 2 = % = %XQ(—CSC%COt %) (;—22) + (csc %) (% -2x) = CSC %COt— —l—Xcch
22. y=2/xsin \/x = ¥ =2,/x(cos \/x) (ﬁ) + (sin /) (ﬁ) = cos /X + Silz/\—x/;
23, y=x""?sec(2x)? = § = >r1/2 sec (2x)? tan (2x)2(2(2x) 2) + sec 2x)? (— 1 x73/2)
= 8x1/2 sec (2x)? tan (2x)% — L x73/2 sec (2x)? = 2 sec (2x)? [16 tan (2x)> — x %] or ﬁsec@x)2 [16x2tam(2x)2 —1]

24. y = /xcsc(x+ 1) =x2 cse (x + 1)3
= &= x1/2(_cse(x + 1)3 cot(x 4+ 1)3) (3(x + 1)?) + csc (x + 1)? (3 x71/2
dx
= —-3/x(x+ )% esc(x + 1)° cot (x + 1) + “C(’i/tl) =1 /xese(x+ 1P [L —6(x+1)? cot(x + 1)7]
or ﬁcso(x + 1)3[1 — 6x(x + 1) cot (x + 1)?]

25. y=5cotx’ = § =5(—csc? x?)(2x) = —10x csc? (x?)
26. y = x? cot 5x = g—i = x2 (—esc? 5x) (5) + (cot 5x)(2x) = —5x? csc? 5x + 2x cot 5x
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
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y =x?sin? (2x%) = & =x(2sin (2x?)) (cos (2x*)) (4x) + sin? (2x) (2x) = 8x® sin (2x?) cos (2x?) + 2x sin® (2x?)

y=x"2sin?(x*) = £ =x"2(2sin(x?)) (cos (x*)) (3x) + sin? (x*) (=2x %) = 6 sin (x®) cos (x*) — 2x~? sin? (x°)
_ (472 ds _ 4 (t+ D@ — (@) 44 \3_ 4 _ _a+D
s= (397 = =2 () () = 2 () Tt =
S= et = — & (15t—1)7% = & = L (3)15t— 1)4(15) = =2
T5(15(— 17 15 =1 e

T+ Dd T x40

= () = (o) GO e

(2L 25 ) (A () -0V () ) _ A (E)
y (2\/{+1> = _i (2\/§+l) ( (2y/x+1) T oevx+1)’ T yx+1)’
=B () 5 2o E) = -

y = 4xy/x + x:4x(x—|—x1/2)1/2 = %—4x (3) (x—l—xl/Q)_l/2 (l—l—lx_l/Z)+(x—|—x1/2)1/2(4)
= (x+x) [2x(1+;¢)+4(x+\/§)] = (x+/X) P (2x 4 X+ Ax+4X) = 6*\/%

I':( sin @ )2j driz( sin 0 ){(005671)(0050)7(sin9)(7sin9):| :2( sin 0 )(cos2670059+sin20)

cos f —1 a0 — cos 6 —1 (cos 0 —1)2 cosf—1 (cos 6 —1)2
(2 sinf)(1—cosf) _  —2sinh
(cos 6 —1)3 ~ (cos —1)?

_ (sinf+1\2 dr __ sin 0+ 1 (1 —cos B)(cos ) — (sin @+ 1)(sinf) | __ 2(sinf+1)
r= (l—cosf)) = do 72(1—0059) |: (1 —cos 6)? :| ~ (1—cos0)? (COSQ

2(s1n0+1)(cos¢9 sin 6 — 1)
(1—cos §)?

— cos? § — sin® @ — sin )

y=02x+D2x+1=02x+1)3? = j-i =30x+ DV22) =3y/2x + 1

y =203x — HVA3x — 4710 =2003x — H1? = L =20 (%) Bx —H1Y03) =

3
(3x — 4)19 20

i —3/2 1 — X X
y=3(5 +sin2x) 7 = & =3 (= 3) (5 +5in 207 [10x + (cos 20()] = LB EeZy

D-lo.
~<

y = (3 + cos3 3X)71/3 = g—z = — % (3 + cos3 3X) 4/3 (3 cos? 3X)( sin 3x)(3) = 330_?_%301); ;1Xn)3x

Xy +2x+3y=1= (xy+y)+2+3y =0 = xy+3y=-2-y = yx+3)=-2-y =y =-135

x2+xy+y2—5x:2:>2x+(xg—i+y)+2y 5—0:>x +2ydy—5 2x—y:>§—i(x+2y):5—2x—y

dy _ 5-2x-y

= dx T x+2y

X3 dxy — 3y*3 =2x = 3x*+ (4x dy+4y> — 4yl/3 3—122 = 4xg—i—4y1/3 %:2—3x2—4y

—3x2—
N %(4X74y1/3):2—3x274y = %:H
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445X 10y = 15 = 4P 412y P =0 = 12y @ = dx TP = = xRy =
45. xy)? =1 = Lxy)"1/2 (x % +y) =0 = x'/2y"1/2 g—i = x12y12 = g_y = —xly = % =1

46. Xy =1 = x2(2yj—§)+y(zx)—o = 2Py W= oxy? = o

(=%
<
>

2 X x+ D) —x)(1) dy _ 1
4.y =535 = g =" > § =5y

+x)1/2 = yl=Llix o g0 dy _ =0 -(+0(=D _, dy _

2 _ (1 1
48. y? = (4 T—x7? & T 2P0

49. p? +4pq —3q2 =2 = 3p? "P+4(p+qj—g)—6q_o = 3p? L +4q P =6q—4p = P (3p* +4q) = 6q — 4p

d 6q — 4
= dp _ 69 —4ap

dqg — 3p?+4q
50. q=(5p+2p) * = 1=—3(5p2+2p) """ <10p ® 42 dp) = —2(5p*+2p)"" = L (10p+2)
dp _ _ (p*+2p)”?
= 4T T Gt

51. rcos2s +sin’s =7 = r(— s1n25)(2)+(c052s)( )+251nscoss—0 = dr(cosZs)-erst 2 sin s cos s

= dr _ 2rsin2s—sin2s __ (2r—1D)(sin2s) __ (2r — 1)(tan 2s)

ds cos 2s cos 2s
52.2rs—r—s+8’=-3 = 2(r+s$)-FL-1+42s=0= LQ2s—1)=1-2s—2r = =122
2 2 dy
3 3 9 2 dy dy 2 42 _y(72x)7(7x) 2}’&)
53. (@) x*+y’=1 = 3x*+3y %—Oé%——;—z:ﬁ_ 5 (
2
= ey 29+ (2x%) <7 ;7) _ 72xy27% _ 2xyt-x!
axz vt - v - ¥5
2 _ 2 dy _ 2 dy _ 1 dy _ 1 &y _ 2 2dy
G YyY=1-{=Dx5= 2= &a=w ™ & (yx?)" :>dxz——(yX) y(2x) +x° 3
1
= oy _ () | g
xz — V2x1 - vixT

54. (a) X2 —y2=1 = 2x—2de—0 = —Zydy:—Zx = Y=2

(b) %:3 = 3= 7;_31 (since y? — x? = —1)
55. (a) Leth(x) = 6f(x) — g(x) = W(x) =6f'(x) —g'(x) = W) =6f'()—g()=6(3) — (—4) =7
(b) Leth(x) = f(x)g’(x) = h'(x) = f(X) (26(0)) £(x) + 2(Of'(x) = 1'(0) = 2f(0)g(0)g'(0) + g*(0)f'(0)
=2 (3) + (D*(=3) = —

) rron (@) + DF(x) — fx)g'(x) 11y — EOFDPFO —fgd) _ G+D(5) =3(=4) _
(¢) Leth(x) = T = h'(x) = FRESIE =h(l)= EOESIE (5’1 o =

(d) Leth(x) = f(g(x)) = N (x) = f'(gx)g'x) = h(0) = f'(gO)g'©) =f'(1) (}) = (1) (}) =1

(e) Leth(x) = g(f(x)) = h'(x) = gE)f'(x) = N (0) = g(fO)F(0) = g'()f'(0) = (—4) (=3) = 12

() Leth(x) = (x +f(x))*? = N(x) =3 (x+ ) (1 +1'(x)) = W) =31+ {12 (1+£(1)
=301+3)2(1+3)=1

(g) Leth(x) = f(x + g(x)) = W(x) =f'(x+ gx) (1 + ¢'(x)) = h(0) = f'(g0)) (1 + '(0))

= (+4) = (3) () =2

Sle
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56. (a) Leth(x) = /xf(x) = h(x) = /xf'(x) + f(x) - # = (1) =/1f'(1)+1£(1)- fﬁ =i1+-3(3)=-8
(b) Leth(x) = (fx)/? = hW(x) =} ({x)"? (f'x)) = W ()= 2(f(O)) V2£10) = $(9)V2(-2) = — 1

© Leth(o) = f(v/x) = W0 = (VX) - 3 = h’(l):f’( ) Ll_ 1

(d) Leth(x) =f(1 —5tanx) = h'(x) = f’(1 — 5 tan x) (=5 sec®’x) = h’(O) = f’(l —5tan 0) (=5 sec?0)
= '(1)(=5) = 1 (=5) = -

(e) Let h(X) _ 2:(;2” = h/(x) _ (24cos )E;fixc)(;i()z)(—sin X) = h/(O) (2+l)(f ) — O fO)0) _ 3(;2) — _

(f) Leth(x) =10sin (Z¥) f2(x) = h'(x) = 10sin () (2f(x)f'(x)) + 2 (x) (10 cos (Z)) (3)

(
= h'(1) =10sin (§) (2f(Df'(1) + 2 (1) (10cos (3)) (5) =20(=3) (3) +0=—12

W

57. x =t +71 = ¥ =2,y =3sin2x = g—i = 3(cos 2x)(2) = 6 cos 2x = 6 cos (2t> + 27) = 6 cos (2t?) ; thus,

dt
by b geos(22) -2t = D] =6cos(0)-0=0

dt T dx T de |,

Butlps=24+5t = & —245

58 t=(u+2u)"? = & — 12420 Pu+42)= 2 (u2+2u)" ds
+5] (3) @+ 20) P+ 1)

:2(u2+2u)1/3+5;thus9 =08 [2(u2+2u)1/3

= &

d
& .= [222+20)" +5] ) @ +20) P+ D =2(2-8F+5) (872F) =222+ 5 (}) = 3

u=2

59. r=8sin(s+ %) = L =8cos(s+Z);w=sin(y/r—2) = & =cos(,/r-2) (Tlﬁ)

051/88111(54’%)* * thus dw _ dw _ dr _ COS( SSin(S+%)72) . [8 cos (S+ E)]
= 6

2,/8sin (s + ) PE T d S Ty Rsin(s+g)
o dw _ cos (,/SSm )SCOS % (cosO)(S) (4) B \/g
dss=0 2/8sin (%) VR

1/3

60. ’t+0=1= (®+t(20L)+L=0= Lo+ 1)=-0 = ¥ = r=(0°+7)

1 (p2 -2/3 _ 2 2 -2/3, _ 2 _ _ de -1 _
= g =30"+7) TQ2H=50("+7) "snowt=0and0’t+0=1=0=1sothat 3| _,,_ =7 =—1
a2 —2/3_ 1 _ dr|  _dr| Ny 1L
and @, =50 +7) =6 T dleo — dolico a@ =(g)=D=—3
6l. yY+y=2cosx = 3y? L+ & =-2sinx = LGBy’ +1)=-2sinx = £ = Ezyzsrlx = ¥ o
_ _2sin(0) 0 &y (3y? +1) (=2 cos x) — (=2 sin x) (Gy %)
341 T dx2 - (3y2+1)°
L&y _ BD(=2c0s0)— (=25in0)6-0) _ _ 1
%) G172 2
o1
13 4 y1/3 — 14=2/3 4 1y-2/3dy _ dy _ 98 dy g dy _
62. x/P+y/P=4 = 3Xx +3y a=0= 5= T oy l,dx_xz,3
N dz_y B (xz/:s) (7%}, 1/3 %) 7(7},2/:;) (%x 1/:;) <12_y B (82"3) [_ %-8*1/3{—1)} (82/3) (2 8- 1/3)
dxz T (X2/3>2 dx? @8 - 84/3
_3f3i_ 3 _1
&7 — 4 T 6
1 1
_ 1 f(t+h)—f() _ EmFl ~ 3T _ 20+ 1—(Qt+2h+1)
63. f(t) = 2[+1 and f(t + h) = 544577 = h = I = @tr2h+ DRt Dh
_ —2h _ -2 / T f(t+h) flo -2
= G heg e — agmrnan 0 LM = hlg‘n = hlgnO Qi+ 2h+ DR+ D)
_ -2
= @iy
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64. g(x) = 2x + land g(x +h) = 20x + h)2 + 1 = 2x2 4 4xh + 2h? 4 | = EXEN—e0) _ @ ddbhidnd 1) - (24 )

h
_ 4xh+2h? _ I — T x+h—gx®) _ s _
= 2 4x+2h = g'x) = hhm0 0 = hhm0 (4x + 2h) = 4x

65. (a)

L x
1 0 \1
1k
f(x):{ x2,—1Sx<0

%, 0<x<1

. _ . 2 . _ . _ 2 _ . — . . _ — .
(b) . ILHE)* f(x) = . IHI(IJ— x* = 0 and § gr%+ f(x) = . 15%* X 0= Xlgn0 f(x) = 0. Since Xlgn(J f(x) = 0 = f(0) it

follows that f is continuous at x = 0.
(¢) lim f'(xX)= lim (2x)=0and lim f'(x)= lim (—2x)=0 = lim f’(x) = 0. Since this limit exists, it
x — 0 x — 0 x — 0 x — 0 x—0

follows that f is differentiable at x = 0.

66. (a)

o x, -1<x<0
/(A)_{lanx. 0<x<w/4

1
-1

ISEIS

—1+

(b) lim f(x)= lim x=0and lim f(xX)= lim tanx =0 = lim f(x) = 0. Since lim f(x) =0 = f(0), it
x—0 x—0 + + x—0 x—0

x—0 x—0
follows that f is continuous at x = 0.

() lim f'x)= lim I =1and lim f'x)= lim sec?x =1 = lim f’(x) = 1. Since this limit exists it
x—=0 x—0 x — 0" x — 0F x—0

follows that f is differentiable at x = 0.

67. (a)

X EES 0<x<1
Y= 2-x1<x52

(b) lim f(x)= lim x=1land lim fx)= lim 2—-—x)=1 = lim f(x) = 1. Since lim f(x) =1 = f(1), it
X —1 X —1 Xx — 1t X — 17 X —1 X —1
follows that f is continuous at x = 1.
. N B . PN 1 . , . , . ,
(©) xli>mr f'x) = xli>mr 1=1 andxlim1+ f'(x) = X1im1+ 1 1 = Xli)mr f'(x) # Xlim1+ f'(x), so Xlgn1 f'(x) does
not exist = fis not differentiable at x = 1.

68. (a) lim f(x)= lim sin2x =0and lim f(x)= lim mx =0 = lim f(x) = 0, independent of m; since
X — 0 x—0 x — 0F — 0t x—0

X
f0)=0= lim0 f(x) it follows that f is continuous at x = O for all values of m.
X —
(b) lim f'(x)= lim (sin2x) = lim 2cos2x =2and lim f'(xX)= lim (mx) = lim m=m = fis
x—0 x—0 x—0 x — 0F x — 0F x — 0"

differentiable at x = 0 provided that lin}) f'(x) = lin%) . f'(x) = m=2.
X — X —
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y=3+sly=lx+@x -4 = & =1-202x—4)2; the slope of the tangentis — 3 = — 3 = 1 —2(2x — 4)?

= 2=-22x-4 = l=5lo=>@x-4=1= 42— 16x+16=1= 4x>— 16x+15=0

= (2x—5@2x-3)=0=x=3orx=3 = (3,7) and (3, — 1) are points on the curve where the slope is — 3 .

1

?:>X

; the slope of the tangentis3 = 3 =1+ 5; = 2= 2

1

2x2 ° T4

= X = 1= (l 71) and (,l l) are points on the curve where the slope is 3.
= 207 3 202 p p

y=2x3-3x2 - 12x + 20 = % = 6x? — 6x — 12; the tangent is parallel to the x-axis when g—i =0

= 6x2-6x—12=0=x2—x-2=0= x—-2x+1)=0 = x=2o0orx=—-1 = (2,0)and (—1,27) are
points on the curve where the tangent is parallel to the x-axis.

y=x3 = gi =3x* = S—i = 12; an equation of the tangent line at (=2, —8)isy + 8 = 12(x + 2)
(2,-8)
4

= y = 12x + 16; x-intercept: 0 =12x + 16 = x = —3 = (—%,0); y-intercept: y = 12(0) + 16 = 16 = (0,16)

y=2x>—3x? —12x +20 = £ =6x>—6x— 12

=24;6x2 —6x— 12 =124

(a) The tangent is perpendicular to the liney = 1 — % when ( T
4
= xX—x-2=4=>x>-x-6=0=> (X—3)(X+2)—O = x=-2o0orx=3 = (—2,16)and (3,11) are
points where the tangent is perpendiculartoy = 1 — 5 .
(b) The tangent is parallel to the line y = /2 — 12x when Y=o 2= 6x2-6x—12=-12 = x>~x=0

= x(x—1)=0 = x=0o0rx=1 = (0,20) and (1, 7) are points where the tangent is parallel to

y=\/§—12x.

y = ZSnX = g—i = X0 =m0 o gy = g—i = _ﬂ—f =—landmy = g—i o % = 1. Since m; = — m% the
tangents intersect at right angles.
y=tanx,— I <x<? = ¥ =sec’x; now the slope A
ofy=—13is—3$ = the normal line is parallel to et y=tanx
y = —%when & =2. Thus,sec’x =2 = _L_=2 SRS (/4. 1)
= coszx:% = cosx:% = x=-—Fandx =7}
for—3 <x<3 = (—%,—1)and (%,1) are points i w2
where the normal is parallel toy = — 3.
(~ml4,-1) -1F y=7% -T

\
y=14cosx = g—i:—sinx = % (71): 1
= the tangent at (5,1) istheliney — 1 = — (x — )

= y = —x+ § + 1; the normal at (E l)is
y—1=M(x-%) = y=x—-7+1

; thus,

D=

y =X +C:>gy—2xandy—x:>dy—1;theparabolaistangenttoy:xwhen2x:1 = x:%:>y:
=) +c=c=}
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=3a? = the tangent line at (a,a%) is y — a® = 3a?(x — a). The tangent line

X=a

78 y=x3 = ¥ =332 = &

intersects y = x* when x? — a® = 3a’(x —a) = (x — a) (x2+xa+a?) =3a’(x —a) = (x—a)(x?+xa—2a?)=0

= (x—a)’(x+2a)=0 = x=aorx = —2a. Now 4 2 = 3(—2a)? = 12a% = 4 (3a?), so the slope at
x=-2a
X = —2a is 4 times as large as the slope at (a, a%) where x = a.
79. The line through (0, 3) and (5, —2) has slope m = % = —1 = the line through (0, 3) and (5, —2) is
y=-—x+3y=7 = dy = 17 sothecurvelstangenttoy— —x+3 = gi =-1=7
= x+1)?=cx#—1. Moreover,y— 7 =—x+3 = H=—x+3x#-1

= c=x+1D(—x+3),x# 1. Thusc=c = x+ 1P =x+D)(x+3) = x+Dx+1—(—x+3)]
=0,x#—-1= x+1)2x—-2)=0 = x=1(sincex# —1) = c=4.

80. Let (b, + v/ a? 7b2) be a point on the circle x? + y? = a?. Then x* +y? =a’ = 2x+2y =0 = % = —§
= % =7 _,b —; = normal line through (b + va? —b2) has slope iiva;sz = normal line is
x=b
y-(:l: a2 ):i\/az (X—b) = yF / b2 72 X F b2 - y = + a2b_b2x

which passes through the origin.

—% = the tangent lineisy =2 — %(x -1

81. x2 4 2y? —9:>2X+4ydy:0:>§i:_% gi

(12)

:71x+Zandthenormallineisy:2+4(x71):4x72.

:—% = the tangent line is y = 1+_73(X—1)

82. x3 +y?=2 = 3x? +2ydy—0 = %:_23;2 = g—i
an

:—§x+%andthenormallineisy:1+%(x—l):§x+%.

83. xy +2x =5y =2 = (x§—§+y)+2 58=0= Px-5=-y-2= =22 5 ¥ =3
G2

= thetangentlineisy:2+2(x—3):2x—4andthenormal]ineisy:2+%l(x—?)):—%x—i—%

84 (- xP=2x+4 = 2y -0 ($-1)=2 = -0 =1+G-0 = F=120 = =i
= the tangent lineisy =2+ 3 (x — 6) = 3 x — 3 and the normal lineisy =2 — § (x — 6) = — $ x + 10.

85. x+,./xy=6 = 1+ L (xd—y+y)—0:>x +y=-2 y:>dy— 2ﬁ_y:>d—y =2
2,/xy dx dx @ 4
éthetangentlineisy—17—(x74) f—x+6andthen0rmall1nelsy—1+ x—-4) = —xfls—l.

= —1 = the tangent line is

4
14
y:4—%(x—1):—ix+%andthenormallineisy:4+4(x—1):4x.

86. x32 42y32 =17 = %xl/Q—i—Syl/?%:O = %: ;;‘11; = %

87. X}y3 +y’=x+y = |:X (3y2 dy) +y3 (3x2)} Fy =149 = 33?2 P42y L — X =1-3x%°
dy (343y2 1) =1—3x2y3 dy _ _1-3x%° | 2 dy i -
= & 0By +2y—-1)=1-3xy’ = 3 = LT < o = 7.but 5 (1’71)15 undefined.

Therefore, the curve has slope — % at (1, 1) but the slope is undefined at (1, —1).
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88. y =sin(x —sinx) = g—z = [cos(x —sinx)](1 —cosXx);y =0 = sin(x —sinx) =0 = x —sinx = km,
k=-2,-1,0, 1, 2 (for our interval) = cos(x — sin x) = cos (kw) = =+ 1. Therefore, g—i = 0and y = 0 when
1 —cos x = 0and x = km. For —27 < x < 2, these equations hold when k = —2, 0, and 2 (since
cos (—m) = cos m = —1). Thus the curve has horizontal tangents at the x-axis for the x-values —2m, 0, and 27

(which are even integer multiples of m) = the curve has an infinite number of horizontal tangents.

89. B = graph of f, A = graph of f’. Curve B cannot be the derivative of A because A has only negative slopes
while some of B's values are positive.

90. A = graph of f, B = graph of f’. Curve A cannot be the derivative of B because B has only negative slopes
while A has positive values for x > 0.

91. 92.

y=f(x) [CN)

1,0 /\ .
N

(6,-1)

1,-2)

93. (a) 0,0 (b) largest 1700, smallest about 1400

94. rabbits/day and foxes/day

95. lim S — Jim [(Si“)-m] () (L) =1

X —0 2¥°—x x—0 X

: 3x—tan7x __ 1; 3x _ _sin7x _ 3 _ 1 1 _sin7x | _1 _ 3 _ 1.7y —
96. xll_l’}IlO 2X = lim (2x 2xcos7x) 2 Xlgno (cos7x 7x (%)) -2 (1 1 2) =-2

7. lim anr = i (S5 2 1) = (1) () im 22 = (1) (0 (1) = }

98. Jim GO — fim (SU0) (350) — Jim SEEO . Letx = sin¢. Thenx — Oasf — 0

9 —0 0 9 —0 sin 0 0 0 —0 sin 6
. sin(sinf) __ 1. sinx __
:> elgno sin 6 - Xlgno X - 1
. 44 L 41
i dan’ftanf+l i ( n mnze) _ (@4+0+0) _
99. y lim @lfts lim (1+ s ) ="avo —4
H(E) _b(f) tan2 §
1
. o . 7—2) 0-2) 2
100, fim stz2ees _ piy (o = =-1
g 0F Scoli-Tcotd—8 — 5 o+ (Fﬁ—wfzg) G-0-0) 5
: xsinx  __ 13 xsinx 13 X sin X S H 35 Usinx | . p; (%) R (%) . sinx
101 lim, 505 = lim i = lim sty = lim [y ] = im [0 G0

=MD =1

. I—cos® _ 1; 2 sin’ (%) _1; Si“(g) Si“('g) 1] — 1y 1
102 fim == = lim) == = lim T Ty e =M (3) =3
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: tanx __ 1z 1 sinx) __ 1. _ : 1 tan (tan x)
103. X]E}no X —xlgno (m'T) = l,lete—tanx = 0 — 0asx— 0 = x]gnog(x)—xlgno “anx

= limO né _ 1. Therefore, to make g continuous at the origin, define g(0) = 1.

104, lim f0) = lim S — lim [‘a"“a“) Lsinx L} =1 lim 905 (using the result of #105);

sm sm X an x sSm (sin X COS X Sln sm X
-0 X —0 t —0

let 9 =sinx=60—0asx—0 = hm sin x = 1. Therefore, to make f continuous at the origin,

—,( sin(sinx) 794,0 sin 6
define £(0) = 1.

105. (a) S =27r® + 2nrh and h constant = % = 47r & + 27h §F = (47r + 2h) &

(b) S =2nr® + 27rh and r constant = % = 271 &

(© S=2nr’+2rrh = L =d4rr §+2n(r ¢ +h§) = @ar+27h) § + 27 §

(d) Sconstant = $ =0 = 0=@mr+2rh) §+2mr § = QU+ F=—1F = $=55 ¢

dr dh
106. S=mry/E+h2 = & =qr- G0 4o /2y &
2 dr
(2) hconstant = ¥ =0 = 8 — szhz T2 +h? § = [ V12 +h? + /—r2+h2} &

dr __ dS __ 7rh dh
(b) rconstant = F =0 = g = T d

dr + mrh dh
dt \/r2+h2 dt

2
2+h2

(c¢) Ingeneral, & = { 2 +h? 4 v

107. A=mr? = @ =2mr $isor=10and § = — 2 m/sec = 4 = 2m)(10) (— 2) = —40 m%/sec

108. V=5 = @ =3¢ = ¢ =35 {F:s0s=20and § = 1200 cm*/min = $ = 5555 (1200) = 1 cm/min

dt dt dt 3s2 dt dt dt

109. dclfll = 2 = 0.5 ohm/sec; and ¢ 1_ o Ly RLZ = E—% % = E—% dd% — Ri% dclft‘ Also, R; = 75 ohms and

Ry =50 ohms = ¢ = =& + 5 = R = 30 ohms. Therefore, from the derivative equation,

-1 dR _ 1 dR __ 5000-5625\ __ 9625 __ 1 _

@Oy dt (75)Z (= 1) (50)’ (0 5) (5625 5000) = ‘& = (=900) ( 5625-5000) = 306625 — 30 — 0-02 ohm/sec.

dR
110. % = 3 ohms/sec and dX = —2ohms/sec;Z = v/R2 + X2 = % = % so that R = 10 ohms and
_ dz _ dO3)+20(=2) _ -1 . _

X =20ohms = & = i = s 0.45 ohm/sec.

111. Given & = 10 m/sec and = 5 m/sec, let D be the distance from the origin = D? = x* 4+ y* = 2D 49

=2x dx L2y & & - p dD =x & —|—y . When (x,y) = (3,—4),D = 32—1—(—4)2 =5and
5 ‘ii—[l) = (3)(10) + (—4)(5) = % = ? = 2. Therefore, the particle is moving away from the origin at 2 m/sec
(because the distance D is increasing).

112. Let D be the distance from the origin. We are given that 42 = 11 units/sec. Then D> = x> + y? = x* + (x%/ 2)2
=x*+x® = 2D dD = 2x —|—3x2 dx —x(2+3x) @ ;X: 3 = D = /32 + 33 = 6 and substitution in the
derivative equation gives (2)(6)(1 1) = (3)(2 +9) & @ E = 4 units/sec.

113. (a) From the diagram we have ho 7% = r:% h.
b) V=1m?h=1r(2h)’h=140" o &V _dmhldh oo dV _ _5adh=6 = %= _ 125 fymin,
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114. From the sketchin the text, s =10 = & =r % 4+ 9 &' Alsor = 1.2isconstant = L =0 = & =r¥ - (1.2) ¢,
Therefore, % =6 ft/secandr = 1.2 ft = % = 5 rad/sec

115. (a) From the sketch in the text, & = —0.6 rad/sec and x = tan 6. Also x = tan § = C(li—’t‘ =sec? 6 9 at point A, x = 0

> dt i
=0=0= % = (sec?0) (—0.6) = —0.6. Therefore the speed of the light is 0.6 = % km/sec when it reaches
point A.
(3/5) rad  Irev 60sec __ 18 .
(b) sec  2rrad  min 7w revs/min
. P b 4 b .
116. From the figure, & = g% = & = T We are given y
that r is constant. Differentiation gives, 8 c
Loa . ()@ -0 (F) ()
Toa b2 . Then,
b r
b=2rand £ = —03r
> o _ 2r(—0.3r) X
“ v/ (2r) r? (—0.3r) — (2r) <\/m> 0 . A
= a=r -2

2
V3R (03044030 a5 4 @) (03 i ' iti i is i I
_ - Vaz . (3r%)( 3:)/;() ) (031 _ 30\;% = 10:/5 m/sec. Since % is positive, the distance OA 1is increasing
2 ; :

when OB = 2r, and B is moving toward O at the rate of 0.3r m/sec.

117. (a) Iff(x) =tanxand x = — 7, then f'(x) = sec? x, ’
f(— %) = —landf’ (— %) = 2. The linearization of L y=tanx
fx)isL(x) =2 (x + I) + (=1) = 2x + 552 a2
—71'1/4 7TI/4 *
/4, -1) -1F
(b) Iff(x) = sec x and x = — 7, then f’'(x) = sec x tan X, ;
f(—2) =+2andf' (- T) = —/2. The :
linearization of f(x)is L(x) = —\/5 (X + %) + \/E
_ V24— :
= —/2x V2D, :
y:secxi
7rI/2 4

y=~NZx 4+ V2(4-m)ia

118. f(x) = m = f'(x) = % . The linearization at x = 0is L(x) = f/(0)(x — 0) + f(0) = 1 — x.
119. f(x) = /x+ 1 +sinx—05=(x+ DY2+sinx - 0.5 = '(x) = (3) x+ D2 +cos x
= L&x)=1{'(0)x —0)+f(0) = 1.5(x — 0) + 0.5 = L(x) = 1.5x + 0.5, the linearization of f(x).

120. fx) == +/1+x=31=20-0)"+1+x0)"?=31=fx)=-2(1-x)2(-D+ 11 +x7?

= (l_%)o + 2\/}? = L(x) = f’(0)(x — 0) + f(0) = 2.5x — 0.1, the linearization of f(x).
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121. S=mry/r> +h? rconstant = dS =mr- 5(r* +h*)~ Y29h dh = \/;%hhzdh. Height changes from hy to hy + dh

— dS — mrho(dh)

(/2 +h2

122. (a) S=6r2 = dS = 12rdr. We want |[dS| < 2%)S = [12rdr| < 120 = |dr| <

< 300 The measurement of the

T
100
edge r must have an error less than 1%.

(b) When V =13, then dV = 3r? dr. The accuracy of the volume is (£) (100%) = (%) (100%)
= (2) @)(100%) = (3) (<) (100%) = 3%

12. C=2mr = r=£<,S=dm’ =S, andV = 4 7% = &, . Ttalso follows that dr = ;- dC, dS = 2 dC and
dv = C—Z dC Recall that C = 10 cm and dC = 0.4 cm.
(@ dr=9%=2cm = (¥)(100%) = (22) (3) (100%) = (.04)(100%) = 4%

(b) dS = 20 (04) Sem = (€) (100%) = (2) (755) (100%) = 8%
(© dV =12 04)=Lcem = () (100%) = (2) (67) (100%) = 12%

27‘2

124. Similar triangles yield 3 = 2 = h = 14 ft. The same triangles imply that 222 = 2 = h=120a"'+6
= dh=-120a2da=—-Rda=(—-) (£ L)=(-&)(+4)=+ 2 ~~ =+ .0444 ft = + 0.53 inches.

CHAPTER 3 ADDITIONAL AND ADVANCED EXERCISES

1. (a) sin20 =2sinfcosf = % (sin 26) = % (2sin @ cos #) = 2 cos 20 = 2[(sin #)(—sin @) + (cos B)(cos 0)]
= cos 20 = cos? — sin’ @

(b) cos 20 =cos’f —sin’H = T d (cos 20) = (cos2 6 —sin? ) = —2sin 20 = (2 cos B)(—sin #) — (2 sin H)(cos )

= sin 260 = cos 0 sin § + sin 6 cos § = s1n29:2s1n90059

2. The derivative of sin (x 4+ a) = sin X cos a + cos X sin a with respect to x is cos (x + a) = cos x cos a — sin x sin a, which

2 2

is also an identity. This principle does not apply to the equation x* — 2x — 8 = 0, since x

it holds for 2 values of x (—2 and 4), but not for all x.

— 2x — 8 = 0 is not an identity:

3. (@) f(x) =cosx = f'(x) = —sinx = f’(x) = —cosx,and g(x) =a+bx +cx’> = g(x) =b+2cx = g"(x) = 2c;

also, f(0) = g(O) =cos(0)=a=a=1;f'(0) =¢'(0) = —sin(0) =b=b=0;{'(0) =g"(0) = —cos(0) =2c
= ¢ = — 5. Therefore, g(x) =1 — —x

(b) f(x) =sin (x +a) = f'(x) = cos(x + a) and g(x) = bsin x + ¢ cos x = g'(x) = b cos x — ¢ sin x; also, f(0) = g(0)

= sin(a) = b sin(0) + c cos (0) = ¢ =sina; f'(0) = g'(0) = cos(a) = b cos (0) — ¢ sin(0) = b = cos a.
Therefore, g(x) = sin x cos a + cos X sin a.

(c) When f(x) = cos x, f”/(x) = sin x and f*)(x) = cos x; when g(x) = 1 — %XQ, 2" (x) = 0 and g¥(x) = 0. Thus
f”(0) = 0 = ¢""(0) so the third derivatives agree at x = 0. However, the fourth derivatives do not agree since
f<4>(0) =1 but g(4)(0) = 0. In case (b), when f(x) = sin (x + a) and g(x) = sin X cos a 4 cos X sin a, notice that
f(x) = g(x) for all x, not just x = 0. Since this is an identity, we have f M(x) = g(")(x) for any x and any positive

integer n.

4. (a) y=sinx = y =cosx = y'=—sinx = y"+y=—sinx+sinx=0;y =cosx = y = —sinx
= y'=—cosx = y'+y=—cosx+cosx=0;y=acosx+bsinx = y = —asinx+ b cosx
= y'=—acosx—bsinx = y"+y=(—acosx—bsinx)+(acosx+bsinx) =0
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(b) y=sin(2x) = y' =2cos(2x) = y" = —4sin(2x) = y’ +4y = —4 sin(2x) + 4 sin (2x) = 0. Similarly,
y = cos (2x) and y = a cos (2x) + b sin (2x) satisfy the differential equation y"’ 4 4y = 0. In general,
y = cos (mx), y = sin (mx) and y = a cos (mx) + b sin (mx) satisfy the differential equation y” + m’y = 0.

5. Ifthe circle (x —h)? + (y —k)?> = a? and y = x? + 1 are tangent at (1, 2), then the slope of this tangent is
m = 2x| 12 = 2 and the tangent line is y = 2x. The line containing (h, k) and (1, 2) is perpendicular to
y=2x = % = — % = h =15 -2k = the location of the center is (5 — 2k, k). Also, (x —h)? + (y — k)? = a?
= x—h+@H-ky=0= 1+ +@y-ky' =0=y = ]k%(yy,)o At the point (1,2) we know
y’ = 2 from the tangent line and that y” = 2 from the parabola. Since the second derivatives are equal at (1, 2)

we obtain 2 = 11(%(22)2 = k=2. Thenh=5—2k = —4 = thecircleis (x +4)* + (y — %)2 = a2. Since (1,2)

lies on the circle we have that a = # .

6. The total revenue is the number of people times the price of the fare: r(x) = xp = x (3 — %)2 , where

0 < x < 60. The marginal revenue is &£ = (3 — %)2 +2xB-%5) (%) = L=3-%5)[B-%) - %]

=3(3-2%)(1—%). Then ¥ =0 = x = 40 (since x = 120 does not belong to the domain). When 40 people

are on the bus the marginal revenue is zero and the fare is p(40) = (3 — 4—’5)2‘ = $4.00.
x =40

7. (3 y=uv = % = % vV+4u ‘ji—f = (0.04u)v 4 u(0.05v) = 0.09uv = 0.09y = the rate of growth of the total production is
9% per year.

(b) If % = —0.02u and ‘é—: = 0.03v, then i—f = (—0.02u)v + (0.03v)u = 0.0luv = 0.01y, increasing at 1% per year.

8. When x* +y* = 225, theny’ = — § . The tangent y
line to the balloon at (12, —9)isy + 9 = § (x — 12) x2 4 y? =225
= y= % x — 25. The top of the gondola is 15 4 8
= 23 ft below the center of the balloon. The inter-
sectionof y = —23 andy = % x — 25 is at the far

right edge of the gondola = —23 = ‘3—‘ x—25

(-12, —9)
= X = % . Thus the gondola is 2x = 3 ft wide.

/ 0y
. = (43)x - 25
Suspension cables —x—— y =3 8¢ﬂ

Gondola .
—>| |+~— Width

NOT TO SCALE

9. Answers will vary. Here is one possibility.

0

10. s() = 10cos (t+ %) = v() = & = —10sin (t+7) = a) = % =45 = —10cos (t+ T)
(a) s(0)=10cos (%) = %
(b) Left: —10, Right: 10
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(c) Solving 10 cos (t + %) = —10 = cos ( %) = —1 = t = 7 when the particle is farthest to the left.
Solving 10 cos (t+5) =10 = cos (t+5) =1 = t=—7% butt 0 = t=2m+ 7% = IT when the particle
is farthest to the right. Thus, v (3¥) =0,v (Z%) = (—) =10,and a (I") = —10.

(d) Solving 10cos (t+2) =0 = t=1 V(E) = v(Z)|=10anda () =0.

11. (@) s(t) = 64t — 1662 = v(t) = % = 64 — 32t = 32(2 — t). The maximum height is reached when v(t) = 0
= t =2 sec. The velocity when it leaves the hand is v(0) = 64 ft/sec.

(b) s(t) = 64t — 2.6t> = v(t) = % = 64 — 5.2t. The maximum height is reached when v(t) =0 = t ~ 12.31 sec.
The maximum height is about s(12.31) = 393.85 ft.

12. s =33 — 122 + 18t +Sand sy = —t3 + 92 — 12t = v; =92 — 24t + 18 and vy = —3t2 + 18t — 12; v; = vy
= 02 —24t+18= 32+ 18— 12 = 22 —7t+5=0 = (t—1)Q2t—5) =0 = t=1secandt= 2.5 sec.
B.mv-v)=k(x}—x*) = m@2vy) =k(-2x%) = mP=k(-F) & = m§ =k« (1) &. Then
substituting =V = m % = —kx, as claimed.
14. (a) x=At+Bt+Cont},t] = v==% =2At+B = v (452) =2A ("5%) + B=A(t; + ) + Bis the
instantaneous velocity at the midpoint. The average velocity over the time interval is v,, = %
2 _ 2 5 —
_ (At2+Bt2+(2_t(lAt1+Bt1+C) _ (a—t) [égijtlHB] — A (tg + tl) +B.
(b) On the graph of the parabola x = At?> + Bt + C, the slope of the curve at the midpoint of the interval
[t1, to] is the same as the average slope of the curve over the interval.
15. (a) To be continuous at x = 7 requires that . lirr71r7 sin x = hm (mx+b) = 0=mr+b = m=— % ;
- X —
(b) Ify = { COSX, x<m is differentiable at x = 7, then lim_cosx=m = m= —landb = 7.
m, X ™ X =T
16. f(x) is continuous at 0 because lim 1=S%X — ( = £(0). f'(0) = lim =IO _ jjpy s
' x—0 X ' x—0 x-0 x—0 X
= Xli_r)nO (%) (%) = Xli_r>n0 (Sii")2 (1+iosx) = % . Therefore f'(0) exists with value % .
17. (a) For all a, b and for all x # 2, f is differentiable at x. Next, f differentiable at x =2 =- f continuous at x = 2
= lirrif f(x) =f2) = 2a=4a—2b+3 = 2a—2b+ 3 =0. Also, f differentiable at x £ 2
X —
= f'(x) = 3, x <2 In order that f'(2) exist we musthavea = 2a(2) —b = a=4a—b = 3a=0»b
T l2ax—b, x>2° o o e
Then2a—2b+3 =0and3a=b = a=3andb=3.

(b) For x < 2, the graph of f is a straight line having a slope of % and passing through the origin; for x 2, the graph of {
is a parabola. At x = 2, the value of the y-coordinate on the parabola is % which matches the y-coordinate of the point
on the straight line at x = 2. In addition, the slope of the parabola at the match up point is % which is equal to the
slope of the straight line. Therefore, since the graph is differentiable at the match up point, the graph is smooth there.

18. (a) Forany a, b and for any x # —1, g is differentiable at x. Next, g differentiable at x = —1 = g continuous at

x=-1= lim1+ gx)=g(—1) = —a—1+2b=—-a+b = b= 1. Also, g differentiable at x # —1
X — —

a, x < —1

I(— 1 = — 2 =
3ax? 41, x> 1" In order that g'(—1) exist we must havea = 3a(—1)°"+ 1 =a=3a+1

égw—{

__1
=a=—3.
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25.
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(b) For x < —1, the graph of g is a straight line having a slope of —% and a y-intercept of 1. For x > —1, the graph of gis

a cubic. At x = —1, the value of the y-coordinate on the cubic is g which matches the y-coordinate of the point

on the straight line at x = —1. In addition, the slope of the cubic at the match up point is —% which is equal to the

slope of the straight line. Therefore, since the graph is differentiable at the match up point, the graph is smooth there.

fodd = f(—x) = —f(x) = £ (f(—x) = &L (—fx) = {'(—x)(-1) =—Fx) = f'(—x) =f'(x) = {’iseven.

feven = f(—x) =f(x) = % f(—x)) = % (fx)) = f'(—x)(—1) =f'(x) = f'(—x) = —f'(x) = " isodd.

Let h(x) = (f)(0) = {0 g(x0) = W) = lim P00 = limy =T E00

X —Xp X — Xp X —Xp
— lim f(x)g(x)ff(x)g(xo)tf(x)g(m)ff(xo)g(xo) _ lim [f(x) {M” + lim { (Xo) [MH
X — Xp X —Xo — Xp X — Xp X —Xo
= 100 Jim, [ ERE ] g0 ) = 0 i [EZ02] - g00) 130) = 00) ), i g

continuous at xy. Therefore (fg)(x) is differentiable at x, if f(x¢) = 0, and (fg)’ (x¢) = g(Xo) f'(Xo).

From Exercise 21 we have that fg is differentiable at O if f is differentiable at 0, f(0) = 0 and g is continuous at 0.
(a) If f(x) = sin x and g(x) = |x|, then |x| sin x is differentiable because f'(0) = cos (0) = 1, f(0) = sin(0) =0
and g(x) = |x| is continuous at x = 0.

(b) If f(x) = sin x and g(x) = x*3, then x?/3 sin x is differentiable because f'(0) = cos (0) = 1, f(0) = sin(0) = 0

and g(x) = x*/? is continuous at x = 0.

(c) Iff(x) =1 —cos x and g(x) = */x, then */x (1 — cos x) is differentiable because f'(0) = sin (0) = 0,
f(0) =1 —cos(0) = 0 and g(x) = x!/3 is continuous at x = 0.

(d) Iff(x) =x and g(x) = x sin ( ) then x2 sin ( ) is differentiable because f'(0) = 1, f(0) = 0 and

lim x sin (l) = lim w: lim S — O (so g is continuous at x = 0).
x—0 X X — x t—oo ¢

If f(x) = x and g(x) = x sin (1), then x sin (1) is differentiable at x = 0 because {'(0) = 1, f(0) = 0 and

11m xsin (1) = 11m0 Sml(*) = hm sint — () (so g is continuous at x = 0). In fact, from Exercise 21,

h’(O) = g(0)f'(0) = 0. However, for x # 0,0 (x) = [x*cos (1)] (= &) +2xsin (). But

lim W(x) = hm [—cos () + 2x sin (1)] does not exist because cos (1) has no limitas x — 0. Therefore,
x—0 X —

the derivative is not continuous at X = 0 because it has no limit there.

From the given conditions we have f(x + h) = f(x) f(h), f(h) — 1 = hg(h) and lim g(h) = 1. Therefore,

P = lim 0= — gy OO0 — i f(x) [f“‘)—l} = f(x) { lim g(h)} — f(x)- 1 = f(x)

= f'(x) = f(x) and f'(x)exists at every value of X.

Step 1: The formula holds for n = 2 (a single product) since y = ujuy = g—i = ‘i]‘;l up +uy d‘:f .

Step 2:  Assume the formula holds for n = k:

_ dy _ du du
y=uly Uy = 5 = dxl UsUsg-+ uk+u1 2113 Ut U G

— m duy,
- dx

Ify = wjuy- - -ueu ;= (uguge - -uy) Uy, then ¢ d— Upop 4 Upllye -y 5t

du du du du
= (S uguz - +uy G2 ugeeu A Ul Uy §E) Uy + uglpe e S

__ dup duy du, du
= Ge U2U3e Uiy FUp G2 Ugee - Upyy + - - Uglg - Uy g Ugyy + Ugllpe - Uy —g .

Thus the original formula holds for n = (k+1) whenever it holds for n = k.
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m) __ m! m) __ m! _ m m _ m! m!
26. Recall () = gratg; - Then (V) = gy =mand (¥) + (1) = gm-wo T arorm—r=m
 mlk+D4mim—k) _  mlm+l) (m+ 1)! (m+1
= T kIDIm-K0! K+DIm-K!  KrDIm+D-(k+rD)Y (k+1 ) Now, we prove

Leibniz's rule by mathematical induction.
Step 1: Ifn =1, then % =u g—; +v g—i . Assume that the statement is true for n = k, that is:
k du d-lv

d@v) _ du d'u dv k) d%u d’v du dv
e — e VT KGE & T (2) oz Tt (k—l) av axr T U g

. _ &ty _ d (dev ) _ [dtu du dv du dv d~lu d?v
Step2: Ifn=k+ 1 then $o00 = & (S00) — [&u v du ]y [kde &k ds &y

F OSSO S [(F) S () ey

2
du d'v da] _ d¥u du dv k k)1 d<'u d?v
tgmtee] =@ vtk+ DR+ +G] &= &+
k k du d*v gty detly du dv k+1Y\ d~'u d?v
)T PG F e = v+ k+DR E+(L ) G &+
k+1) du dv dy
+() & W e g

Therefore the formula (c) holds for n = (k 4+ 1) whenever it holds for n = k.

27. () TP=4rk o =Ty — (se00Med) 1 08156 ft

g 4m2
2 __ 47°L _ 27 . _ 2m 1 _ .7 . _ s ~
(b) T2 =4k = T= ﬁﬁ, dT = 2 Jodl = JodLidT = et (0,01 f6) ~ 0.00613 sec.

(c) Since there are 86,400 sec in a day, we have (0.00613 sec)(86,400 sec/day) =~ 529.6 sec/day, or 8.83 min/day; the
clock will lose about 8.83 min/day.

28. v=1s3 = & =358 = —k(6s%) = § = —2k. If sy = the initial length of the cube's side, then s; = sy — 2k

1/3
= 2k = sy — s1. Let t = the time it will take the ice cube to melt. Now, t = 3 = - = %
A s () = (o)

— 1
BB 11 hr.
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CHAPTER 4 APPLICATIONS OF DERIVATIVES

4.1 EXTREME VALUES OF FUNCTIONS

1. An absolute minimum at X = c9, an absolute maximum at x = b. Theorem 1 guarantees the existence of such
extreme values because h is continuous on [a, b].

2. An absolute minimum at X = b, an absolute maximum at x = ¢. Theorem 1 guarantees the existence of such
extreme values because f is continuous on [a, b].

3. No absolute minimum. An absolute maximum at x = c¢. Since the function's domain is an open interval, the
function does not satisfy the hypotheses of Theorem 1 and need not have absolute extreme values.

4. No absolute extrema. The function is neither continuous nor defined on a closed interval, so it need not fulfill
the conclusions of Theorem 1.

5. An absolute minimum at X = a and an absolute maximum at x = c. Note that y = g(x) is not continuous but
still has extrema. When the hypothesis of Theorem 1 is satisfied then extrema are guaranteed, but when the
hypothesis is not satisfied, absolute extrema may or may not occur.

6. Absolute minimum at X = ¢ and an absolute maximum at x = a. Note that y = g(x) is not continuous but still
has absolute extrema. When the hypothesis of Theorem 1 is satisfied then extrema are guaranteed, but when
the hypothesis is not satisfied, absolute extrema may or may not occur.

7. Local minimum at (—1, 0), local maximum at (1, 0)

8. Minima at (—2, 0) and (2, 0), maximum at (0, 2)

9. Maximum at (0, 5). Note that there is no minimum since the endpoint (2, 0) is excluded from the graph.

10. Local maximum at (—3, 0), local minimum at (2, 0), maximum at (1, 2), minimum at (0, —1)

11. Graph (c), since this the only graph that has positive slope at c.

12. Graph (b), since this is the only graph that represents a differentiable function at a and b and has negative slope at c.

13. Graph (d), since this is the only graph representing a funtion that is differentiable at b but not at a.

14. Graph (a), since this is the only graph that represents a function that is not differentiable at a or b.

15. fhas an absolute min at x = 0 but does not have an absolute !
max. Since the interval on which f is defined, —1 < x < 2, Joy=1x|

is an open interval, we do not meet the conditions of
Theorem 1.
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17.

18.

19.

20.

21.

. fhas an absolute max at x = 0 but does not have an absolute

min. Since the interval on which f is defined, —1 < x < 1, is
an open interval, we do not meet the conditions of
Theorem 1.

f has an absolute max at x = 2 but does not have an absolute
min. Since the function is not continuous at x = 1, we do
not meet the conditions of Theorem 1.

f has an absolute max at X = 4 but does not have an absolute
min. Since the function is not continuous at X = 0, we do
not meet the conditions of Theorem 1.

f has an absolute max at x = % and an absolute min at
X = 377‘ Since the interval on which f is defined,

0 < x < 2, is an open interval, we do not meet the
conditions of Theorem 1.

f has an absolute max at x = 0 and an absolute min at

x = 5 and x = —1. Since f is continuous on the closed
interval on which it is defined, —1 < x < 2w, we do meet
the conditions of Theorem 1.

f(x) =3x—5 = f'(x) =3 = no critical points;

f(—=2) = — 13—9, f(3) = —3 = the absolute maximum
is —3 at x = 3 and the absolute minimum is — % at
X=-2

(-1,2)

)

UPLOADED BY AHMAD JUNDI

y=gx)

4 1n4
yeney MY

“2, -19/3%
Abs

min 7
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23.

24.

25.

26.

27.

f(x) = —x —4 = f'(x) = —1 = no critical points;
f(—4) = 0, f(1) = —5 = the absolute maximum is 0
at x = —4 and the absolute minimum is —5 atx =1

f(x) = x> — 1 = f/(x) =2x = acritical point at
x=0;f(—1) =0, f(0) = —1, f(2) =3 = the absolute
maximum is 3 at x = 2 and the absolute minimum is —1
atx =0

f(x) =4 —x? = f'(x) = —2x = acritical point at

x =0; f(—3) = =5, 1(0) =4, f(1) = 3 = the absolute
maximum is 4 at x = 0 and the absolute minimum is —5
atx = —3

Fx)=—-1% =
x = 0 is not a critical point since 0 is not in the domain;
F(0.5) = —4, F(2) = —0.25 = the absolute maximum is

—0.25 at x = 2 and the absolute minimum is —4 at
x=0.5

—x% = F(x) =2x% = %, however

F(x) = —1=—x"' = F(x)=x%= %, however
x = 0 is not a critical point since 0 is not in the domain;
F(=2) = 3 ,F(—=1) =1 = the absolute maximum is 1 at

X = —1 and the absolute minimum is % atx = —2

hx) = 3/x =x3 = W(x) = 1x7%* = acritical point
atx = 0;h(—1) = —1,h(0) = 0, h(8) = 2 = the absolute
maximum is 2 at x = 8 and the absolute minimum is —1
atx = —1

Copyright © 2010 Pearson Education, Inc.
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fe)=—x-4

(2,3) Abs
max

2
y=x"-1
2F -1<x<2

& 1

1
/
A
s
|
T
LN
>
o
z
(3%}
=

(2,-0.25)
Abs max

2+

3 F

—4 @ (0.5,-4)
Abs min
y
=1, 1)
0.8
0.6
(2, 1/2) 04+
F=—1 02l
1 1 1 1 X
-2 -1.5 -1 -0.5
y
3
y=3%
oL ~1sxs<8 8,2
Abs
1 max
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28.

29.

30.

31.

32.

h(x) = —3x*® = h(x) = —2x~/3 = acritical point at
x =0; h(—1) = =3, h(0) = 0, h(1) = —3 = the absolute
maximum is 0 at X = 0 and the absolute minimum is —3
atx =1landatx = —1

gx)=vV4-—x2= (4—)(2)1/2

-1 _
= g0 =1@-x) "2 = Viex
= critical points at x = —2 and x = 0, but not at x = 2

because 2 is not in the domain; g(—2) = 0, g(0) = 2,

g(l) = \/§ = the absolute maximum is 2 at x = 0 and the
absolute minimum is 0 at x = —2

g =—V5-x=—-(5-x)"" 5-x3)"(—2x)

= gdx=-(1)= \/5)(—7 = critical points at x = —/5
and x = 0, but not at x = \/5 because \/§ is not in the
domain; f (,\/g) =0, f(0) = f\/g

= the absolute maximum is 0 at x = —4/5 and the absolute
minimum is —\/5 atx =0

f(0) = sin = f'(0) =cos @ = 6 = 7 is a critical point,
but & = =7 is not a critical point because =" is not interior to
A _ Sty _ 1
the domain; f (5F) = =1, (3) = 1,f(3F) =3
= the absolute maximum is 1 at § = 7 and the absolute

minimum is —1 at 0 = =~

f(0) =tan 0 = f'() = sec’ = f has no critical points in
(5, 7). The extreme values therefore occur at the
endpoints: (%’r) = ,\/g and f (g) =1 = the absolute
maximum is 1 at § = 7 and the absolute

- . e
minimum is \/§at97 3
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h(x) =323

(-1,-3) (1,-3)

<

y=\l4_x2 (0, 2) Abs max
_ F\.

20 10 !
Abs
min -1
y
Vs,0
1 1 1 1 1 X
2512 -15 -1 05 0

(7/2, 1) Abs max
1
1 1 1 9
—/2 w2 576
1 y=sin6, -m/2 <0 < 57/6
(-m/2,-1)
Abs min

(m/4, 1)

I T B 11 0
-1 0.6 0.2 0.6
05

1k f®)=tne

-15F
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34.
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36.

37.

38.

39.

40.

41.

42.
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g(x) =cscx = g'(x) = —(csc x)(cot X) = acritical point N E\bsmax ) 1(\bsmax )
Ty _ 2 2 a13,2\3)  (2m3,21\3
wx=558(5) = Jros () =L (§) = = e .
. . y=cscx (@2, 1)
absolute maximum is \/5 atx = and x = T’ and the O8I m3swsams g
min
absolute minimum is 1 at x = § 8;‘
0 77'/3 7'rI/2 27:'/3
g(x) =sec x = g'(x) = (sec x)(tan Xx) = a critical point at ,
5 )
x=0;g (— —) =2,g0)=1,¢g ( ) 7 = the absolute a2 i
maximum is 2 at x = — 5 and the absolute minimum is 1
— 1.5F
atx =0 2= see (nt6,23)
—-/.
©, 1)
05+
1 1 1 1 1 1 1
-1 -0.6 0.2 0.2 04
fiy=2—|t| =2 — Ve =2— ()" 3
Iy 2\—1/2 ot '
= f=—3() "2 =-J5=—y

= acritical pointatt = 0; f(—1) = 1,
f(0) = 2,f(3) = —1 = the absolute maximumis 2 att =0
and the absolute minimum is —1 att = 3

f© =Je=5] = V=52 = (« *5)2)1/2 = f'(1)

=

-1 _ ‘) =|t-
= J (=5 -5 = S = = o 0.2
= acritical point att = 5; f(4) = 1, f(5) = 0, f(7) = 2 . @2
= the absolute maximum is 2 at t = 7 and the absolute . ! . .
minimumisQatt =35 *15" ? teos
f(x) = x*3 = f'(x) = x!/3 = acritical point at x = 0; f(—1) = 1, f(0) = 0, f(8) = 16 = the absolute

maximum is 16 atx = 8 and the absolute minimumis O atx = 0

f(x) = x% = f'(x) = 2x¥3 = acritical pointat x = 0; f(—1) = —1, f(0) = 0, f(8) = 32 = the absolute

maximum is 32 atx = 8 and the absolute minimum is —1 at x = —1

g0) = 6%/° = ¢'(6) = 267%/° = acritical point at § = 0; g(—32) = —8, g(0) = 0, g(1) = 1 => the absolute

maximum is 1 at & = 1 and the absolute minimum is —8 at § = —32

h(9) = 36%3 = W () =20~/ = acritical point at § = 0; h(—27) = 27, h(0) = 0, h(8) = 12 = the absolute
maximum is 27 at § = —27 and the absolute minimum is O at = 0

y=x>—-6x+7=y =2x —6=2x — 6 =0 = x = 3. The critical point is x = 3.
f(x) = 6x2 — x> = f'(x) = 12x — 3x> = 12x — 3x> = 0 = 3x(4 — x) = 0 = x = 0 or x = 4. The critical pointss are

X = 0and x = 4.
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)=x(4—x) = '(x) =x[34 —x)*(=D)] + 4 —x)° = (4 —x)*[-3x+ (4 —x)] = (4 —x)*(4 — 4x)
=4(4 —x)*(1 —x) = 4(4 —x)*(1 —x) = 0 = x = 1 or x = 4. The critical points are x = 1 and x = 4.

)= (x=1D’(x =3 = g'(x) = (x = 1)* - 2(x = 3)(1) + 2(x = 1)(1) - (x = 3)°
2x=3)(x—D[x=D+(x=3)] =4x-3)(x—1)(x—2) = 4(x-3)(x—1)(x—2)=0=x=3o0orx = lor
x = 2. The critical points are x = 1, x = 2, and x = 3.

44. g(x

45. y=xX>+2=2y =2 -2 =22 5 W22 0526 — 2=0=x = 1; 272 = undefined = x> = 0 = x = 0.

The domain of the function is (—oco,0) U (0, 00), thus x = 0 is not in the domain, so the only critical point is x = 1.

46. f(x) = 25 = f'(x) = “‘?22}2}*2“) =X s S =02 X’ —4x=0=x=00rx =4 =5 = undefined

= (x —2)? = 0 = x = 2. The domain of the function is (—00,2) U (2, 00), thus x = 2 is not in the domain, so the only
critical points are x = 0 and x = 4

47,y =x2 =32 /Xy = 2x - B = 20016 5 205016 = 0 5 X2 - 16 = 0 = x = 4; 22 1€ = undefined

X

= /x = 0 = x = 0. The critical points are x = 4 and x = 0.

48. g(x):\/ZX—X2:>g/(x):\/12:‘)(2:>\/;):‘XZ:O:>1—X:0:>X:1;\/;X_%xz:undeﬁnedi 2x —x2=0

2x—x2:O:>x:Oorx:2.Thecriticalpointsarex:O,X: 1, and x = 2.

49. Minimum value is 1 at x = 2.

y=2x"—8x+9

-2 2 4 6

[-2,6] by [-2,4]

50. To find the exact values, note that y’ = 3x2 -2,

Y
which is zero when x = + \/g . Local maximum at
6
(=/2 4+ 24°) ~ (~0.816, 5.089); local )
; e y=x —2x+4
minimum at ( 54— T) ~ (0.816, 2.911) 2
L + + + + + + + + + > X
6 -4 2 4 6
r

[-6,6] by [-2,7]
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51. To find the exact values, note that that y’ = 3x24+2x — 8

y=x+x"—8x+5

L + + + + + > X
-6 -4 -2 2 4 6
1=,
[-6,6] by [-5,20]
52. Note that y’ = 5x*(x — 5)(x — 3), which is zero at
}7
x = 0, x = 3, and x = 5. Local maximum at (3, 108); 125} y=x (x-5)
local minimum at (5, 0); (0, 0) is neither a maximum nor 100
a minimum. 75
50
25
-2 -ﬁ 1 2 3 4 5 6
[-2,6] by [-25,125]
53. Minimum value is O when x = —1 or x = 1.
y
sl
2 y=x*-1
X
-4 -2 2 4
21

[-6,6] by [-2,4]

54. Note thaty’ = ‘/—f/;z, which is zero at x = 4 and is

undefined when x = 0. Local maximum at (0, 0); 3

absolute minimum at (4, —4)

[-4,3] by [0,18]
55. The actual graph of the function has asymptotes at x = =+ 1,
so there are no extrema near these values. (This is an 3?
example of grapher failure.) There is a local minimum at kzr J y= 1
(0, 1). J1-x?
+ + + + X
= Ll
21
34

[4.7,4.7] by [-3.1,3.1]
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56. Maximum valueis2 atx = 1;

minimum value is 0 at x = —1 and x = 3.

37 y=3+2x—x"

T

+ + + + X
-4 -2 2 4
-1+
21
-3 +
[-4.7,4.7] by [-3.1,3.1]
57. Maximum value is % atx = 1;
Y
minimum value is —% as x = —1. x
+ + + + + + + + + X
-4 -2 2 4
~e<5
[-5,5] by [-0.7,0.7]
58. Maximum value is § at x = 0;
Y
minimum value is —% asx = —2. y= xiﬂ
+ + + + + + + + X
-4 -2 2 4
-0.5
[-5.5] by [-0.8.0.6]
_ 2/3 2,-1/3 _ 5x+4
59. y' = x*3(1) + 2x /(x+2)7°§‘§; v
34
crit. pt. | derivative | extremum | value y=x"(x+2)
2 i
x=—3 0 local max | $210'/% = 1.034
x=0 undefined | local min | 0 /\]\
t t t t t t +H— X
-4 -2 2 4
-14
_2 +
-3 -
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60. y/ — X2/3(2X) + %X_l/g(XQ _ 4) _ 8x%2-8

T3x Y
3 ! 2/3 2
crit. pt. | derivative | extremum | value 27 y=x (x _4)
x= -1 0 minimum | —3 17
x=0 undefined | local max 0 x
. -4 4
x=1 0 minimum 3
[—4,4] by [—3,3]
_ 1
61 y’—x2\/4—2(—2x)—I—(l)\/4—x2 v
X+ (4-x) _ 4-2% e
B Via—x2 T Va—x2 3 y=x 4-x
2 4
. . . 1 T
crit. pt. | derivative | extremum | value <
X= -2 undefined | local max 0 - -1 A0 1 2
X=—v2 0 minimum | —2 _2 ]
X = \/5 0 maximum 2 -3
X =2 undefined | local min 0 [2.35,2.35] by [-3.5,3.5]
I 21 _ _
62.y—x2\/3j( 1) +2xy/3 —x v
X+ x)B-x) _ _5x*4+12x L
T n/i-x T 2/3-x . y=x’\3-x
crit. pt. | derivative | extremum | value
x=0 0 minimum 0 21
X = %2 0 local max %‘51151/2 ~ 4.462
x =3 | undefined | minimum 0 S 2 T2 & =
[4.7,4.7] by [-1,5]
-2, x<1
! >
6.y = { 1, x>1 y
6
crit. pt. | derivative | extremum | value 4
x=1 | undefined | minimum | 2 y= 4-2x, xsl
2 x+1, x>1
+ + + + +— X
-4 -2 2 4
[4.7,4.7] by [0,6.2]
-1, x<0
!/ __ 1)
64'y_{ 2-2x, x>0 Y
6 { 3-x, x<0
y= 2
crit. pt. | derivative | extremum | value 4 3+2x-x", x20
x =0 | undefined | local min 3
x=1 0 local max 4 2
_14 + _42 + t é \ 4: X

[4.4] by [-1,6]
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x <1
x> 1 —x*—2x+4, x<1
y y= R
—x"+6x—-4, x>1

crit. pt. | derivative | extremum | value

x=-1 0 maximum | 5 )
x=1 undefined | local min 1 2
x=3 0 maximum 5

66. We begin by determining whether f'(x) is defined at x = 1, where f(x) = { 4

x
—4/ -2 | 2 4 \6
21

[-4.6] by [-2.6]

1,2

1.2 1 15
X sX+ 7 x<1

x3 — 6x2 + 8%, x> 1

Clearly, f'(x) = —ix — $ if x < 1, andhlir(r)lif’(l +h) = —1. Also, f'(x) = 3x*> — 12x + 8 if x > 1, and

hlir(r)1+f’(1 + h) = —1. Since f is continuous at x = 1, we have that f’(1) = —1. Thus,
1 1
f/(X): —2X 3 x<1
3x2—12x+8, x>1
12+

Note that —ix — § = 0 when x = —1, and 3x? — 12x + 8 = 0 when x =

122-4(3)(8) _ 12++/48 2/3
2(3) 6 =2+ 3

But 2 — 2‘3/3 ~ 0.845 < 1, so the critical points occur at x = —1 and x = 2 + 2—\3/5 ~ 3.155.
crit. pt. | derivative | extremum | value
x=-—1 0 local max 4 = - —Ix+L, x<1
X ~ 3.155 0 local min | ~ —3.079 v X —6x"+8x, x>1
t + + + | + + + + X
-4 -2 ] 2 6
) \/L
-4 1
[4,6] by [-5,5]
67. (a) No, since f'(x) = 2(x — 2)7'/3 which is undefined at x = 2.
(b) The derivative is defined and nonzero for all x # 2. Also, f(2) = 0 and f(x) > 0 for all x # 2.
(c) No, f(x) need not have a global maximum because its domain is all real numbers. Any restriction of f to a closed
interval of the form [a, b] would have both a maximum value and minimum value on the interval.
(d) The answers are the same as (a) and (b) with 2 replaced by a.

68. Note that f(x) = {

(a)
(b)
()
(d)

—x3 4 9x,
x3 — Ox,

x<-3or0<x<3 —3x3 49,
—3<x<0orx 3 3x3 — 9,
No, since the left- and right-hand derivatives at x = 0, are —9 and 9, respectively.

x<-=3or0<x<3

.Therefore,f’(x)—{ C3cx<Oorx>3

No, since the left- and right-hand derivatives at x = 3, are —18 and 18, respectively.
No, since the left- and right-hand derivatives at x = —3, are 18 and —18, respectively.

The critical points occur when f/(x) = 0 (at x = = +/3) and when f'(x) is undefined (at x = 0 and x = =+ 3). The
minimum value is 0 at x = —3, at x = 0, and at x = 3; local maxima occur at (—\/g, 6\/5) and (\/g, 6\/5)
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Yes, since f(x) = |x| = VX% = ()(2)1/2 = f'x) =3 (x})" 1/2(2)4) 1/2 = 1y is not defined at x = 0. Thus it is

not required that f’ be zero at a local extreme point since f’ may be undeflned there.

If f(c) is a local maximum value of f, then f(x) < f(c) for all x in some open interval (a,b) containing c. Since f is even,
f(—x) = f(x) < f(c) = f(—c) for all —x in the open interval (—b, —a) containing —c. That is, f assumesa local maximum at
the point —c. This is also clear from the graph of f because the graph of an even function is symmetric about the y-axis.

If g(c) is a local minimum value of g, then g(x)  g(c) for all x in some open interval (a, b) containing c. Since g is odd,
g(—x) = —g(x) < —g(c) = g(—c) for all —x in the open interval (—b, —a) containing —c. That is, g assumes a local
maximum at the point —c. This is also clear from the graph of g because the graph of an odd function is symmetric about
the origin.

If there are no boundary points or critical points the function will have no extreme values in its domain. Such functions do
indeed exist, for example f(x) = x for —oo < x < co. (Any other linear function f(x) = mx + b with m # 0 will do as
well.)

(@) V(x)=160x — 52x2 + 4x3

V/(x) = 160 — 104x + 12x* = 4(x — 2)(3x — 20)

The only critical point in the interval (0, 5) is at x = 2. The maximum value of V(x) is 144 at x = 2.
(b) The largest possible volume of the box is 144 cubic units, and it occurs when X = 2 units.

(@ f'(x)= 3ax2 4+ 2bx +cisa quadratic, so it can have 0, 1, or 2 zeros, which would be the critical points of f. The

function f(x) = x* — 3x has two critical points atx = —1 and x = 1. The function f(x) = x®> — 1 has one critical point
atx = 0. The function f(x) = x3 + x has no critical points.

¥y
y= =x3 3x
Y=X3*1 / y=x3+x
x [ WA x L1 TR B x

(b) The function can have either two local extreme values or no extreme values. (If there is only one critical point, the

cubic function has no extreme values.)

s:—%gt2+v()t+s():> % z—gt+v():0:>t: V—,“.Nows(t):so@t(—g—t—i—vo) =0&t=0ort= 2;“.

Thus s(%) = —%g(é) + Vo( ) + 50 = + sp > s is the maximum height over the interval 0 <t < 2V°

% = —2sin t 4 2cos t, solving % =0=tant=1= t= 7 + nm where n is a nonnegative integer (in this exercise t is

never negative) = the peak current is 21/2 amps.

Maximum value is 11 at x = 5;
minimum value is 5 on the interval [—3, 2]; 12
local maximum at (-3, 9) 10

N#K
<
=
LSH
x
=
+
0

-6 -4 -2 2 4 6
[-6,6] by [0,12]
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78. Maximum value is 4 on the interval [5, 7];
minimum value is —4 on the interval [—2, 1]. A g(x)=|x=1]-|x-3]

[-3.8] by [-5,5]

79. Maximum value is 5 on the interval [3, c0);

minimum value is —35 on the interval (—oo, —2]. sy h(x)=|x+2|-|x-3|
4
2
+ + > X
-6 -4 -2 2 4 6
-4
-6

[6.6] by [~6.6]

80. Minimum value is 4 on the interval [—1, 3]

k(x)=|x+1]+]x-3|

-6 -4 -2 2 4 6
[-6,6] by [0,9]

81-86. Example CAS commands:
Maple:
with(student):
fi=x->xM - 8¥x"2 + 4¥x + 2;
domain := x=-20/25..64/25;
plot( f(x), domain, color=black, title="Section 4.1 #81(a)" );
Df :=D(f);
plot( Df(x), domain, color=black, title="Section 4.1 # 81(b)" )
StatPt := fsolve( Df(x)=0, domain )
SingPt := NULL;
EndPt := op(rhs(domain));
Pts :=evalf([EndPt,StatPt,SingPt]);
Values := [seq( f(x), x=Pts )];
Maximum value is 2.7608 and occurs at x=2.56 (right endpoint).
Minimum value 3'is -6.2680 and occurs at x=1.86081 (singular point).
Mathematica: (functions may vary) (see section 2.5 re. RealsOnly ):
<<Miscellaneous “RealOnly"
Clear[f,x]
a=—1;b=10/3;
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flx_]1=2+2x —3x*?

fx]

Plot[{f[x], f'[x]}, {x,a,b}]

NSolve[f'[x]==0, x]

{flal, f[0], f[x]/.%, f[b]//N
In more complicated expressions, NSolve may not yield results. In this case, an approximate solution (say 1.1 here)
is observed from the graph and the following command is used:

FindRoot[f'[x]==0,{x, 1.1}]

4.2 THE MEAN VALUE THEOREM

I. When f(x) = x> +2x — 1 for0 < x < I, then =10 = f'(c) = 3=2c+2 = c= 1.

£(1) - £(0 _
2. When f(x) = x%/3 for0 < x < l,then%o():f’(c)é 1= (%) B = c:%.

3. Whenf(x)zx—i—%for%§x§2,thenW:f’(c) = 0=1-4=c=1

4. When f(x) = /x = 1for 1 < x <3, then = —'(c) = %2 = Lo = c=1.
5. Whenf(x):x3—x2f0r—1§x§2,then%:f’(c) =2=32-2c=>c= 1i3\/7.

HT\ﬁ ~ 1.22 and ]_T\ﬁ ~ —0.549 are both in the interval —1 < x < 2.

3 2<x< —g(—
6. When g(x) = {iz 02<; 25 0, then % =g'(c)=>3=g(c). If -2 < x <0, then g'(x) = 3x*> = 3 =g'(c)

=3c?=3=c= £1.0Onlyc=—1isintheinterval. If 0 < x < 2, then g'(x) =2x = 3 = g'(c) = 2c =3 = ¢ = 3.
7. Does not; f(x) is not differentiable at x = 0 in (—1, 8).
8. Does; f(x) is continuous for every point of [0, 1] and differentiable for every point in (0, 1).
9. Does; f(x) is continuous for every point of [0, 1] and differentiable for every point in (0, 1).
10. Does not; f(x) is not continuous at x = 0 because . lin%) f(x) =1#0=1(0).
11. Does not; f is not differentiable at x = —1 in (=2, 0).
12. Does; f(x) is continuous for every point of [0, 3] and differentiable for every point in (0, 3).

13. Since f(x) is not continuous on 0 < x < 1, Rolle's Theorem does not apply: lin%f f(x) = limr x=1=0=1(1).
X — X —

14. Since f(x) must be continuous at x = 0 and x = 1 we have 1iH(l)+ fx) =a=1f(0) = a=3and
X —
lirr% f(x) = lin}+ fx) = —1+3+a=m+b = 5=m+b. Since f(x) must also be differentiable at
X = X —

x = 1 we have ]irnr f’(x) = ]in}+ f'(x) = —2Xx 4+ 3|X:1 = m| - = 1 = m. Therefore,a=3, m=1andb = 4.
X — X —
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(a) i 2 0 2 ’
i AN )
iii R > :
iv 0o ¢+ 0 % *

(b) Letr; and ry be zeros of the polynomial P(x) = x" + a,,x™' + ... + a;x + ag, then P(r;) = P(ry) = 0.
Since polynomials are everywhere continuous and differentiable, by Rolle's Theorem P'(r) = 0 for some r
between r; and 1y, where P/(x) = nx™!' + (n — 1) a,,x"> + ... + a;.

With f both differentiable and continuous on [a, b] and f(r) = f(ry) = f(r3) = 0 where ry, r5 and r3 are in [a, b],
then by Rolle's Theorem there exists a ¢; between r; and 1o such that f'(¢;) = 0 and a ¢y between 1y and 3
such that f’(cy) = 0. Since f’ is both differentiable and continuous on [a, b], Rolle's Theorem again applies and
we have a c3 between c; and cs such that f”(c3) = 0. To generalize, if f has n+1 zeros in [a, b] and f ™ is

continuous on [a, b], then f (") has at least one zero between a and b.

. Since f” exists throughout [a, b] the derivative function f’ is continuous there. If f’ has more than one zero in [a, b], say

f'(r1) = f'(ry) = 0 for 1; # r9, then by Rolle's Theorem there is a ¢ between r; and ry such that f”(c) = 0, contrary to
f” > 0 throughout [a, b]. Therefore f’ has at most one zero in [a,b]. The same argument holds if f” < 0 throughout [a, b].

If f(x) is a cubic polynomial with four or more zeros, then by Rolle's Theorem f’(x) has three or more zeros, f”(x) has 2 or
more zeros and ”(x) has at least one zero. This is a contradiction since f’”(x) is a non-zero constant when f(x) is a cubic

polynomial.

With f(—2) = 11 > 0 and f(—1) = —1 < 0 we conclude from the Intermediate Value Theorem that f(x) = x* + 3x + 1
has at least one zero between —2 and —1. Then 2 < x < -1 = -8 <x} < -1 = =32 < 4x®> < —4

= 29 <4x3+3 < —1=f'(x) <0for —2 < x < —1 = f(x) is decreasing on [—2, —1] = f(x) = 0 has exactly one
solution in the interval (—2, —1).

f(x) = x® + % +7 = f'x) =3x% — % > 0on(—00,0) = f(x) is increasing on (—o0,0). Also, f(x) < 0if x < —2 and
f(x) > 0if —2 < x < 0 = f(x) has exactly one zero in (—o0, 0).

g(t) = \ﬂ—l— Vi+l—4 = @) = 2%/; + 2\/% > 0 = g(t) is increasing for t in (0, >0); g(3) = \/_— 2 < 0and
g(15) = /15 > 0 = g(t) has exactly one zero in (0, c0).

g)=15+VI+t-31=¢g@1= (1%)2 + 2\/%? > 0 = g(t) is increasing for tin (—1, 1); g(—0.99) = —2.5 and
2(0.99) = 98.3 = g(t) has exactly one zero in (—1, 1).

r(0) = 6 + sin? (g) -8 =r@®=1+ % sin (g) cos (g) =1+ % sin (23—9) > 0 on (—o0,00) = 1(f) is increasing on

(—00,00); 1(0) = —8 and r(8) = sin* (}) > 0 = r(6) has exactly one zero in (—00, c0).

r(f) = 26 — cos? 0 + \/5 = r'(#) =2+ 2sinfcos § =2+ sin 20 > 0 on (—oo,00) = r(#) is increasing on (—oo, 0o);
1(—27) = —4m — cos (—27) + f =—A4r -1+ \/5 <OandrQ2m) =47 — 1+ \/5 > 0 = r(0) has exactly one zero in

(—00, ).

r(f) = sec 6 — % +5 = r'(0) = (sec §)(tan 9) + % > 0 on (O ﬂ) = r(f) is increasing on (O, g) ; 1(0.1) & —994 and

’2
r(1.57) ~ 1260.5 = r(6) has exactly one zero in (0,3).
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1) =tan 6 —cot 0 — 0 = r'(§) =sec?d +csc?§ — 1 =sec?§ + cot?§ > 0on (0,5) = r(6) is increasing on (0, %) ;

2

r(3)

By Corollary 1, f’(x) = 0 for all x = f(x) = C, where C is a constant. Since f(—1) = 3 we have C = 3 = f(x) = 3 for
all x.

— 2 < 0andr(1.57) ~ 1254.2 = r(0) has exactly one zero in (0, 3) .

g(x) = 2x + 5 = g'(x) = 2 = {'(x) for all x. By Corollary 2, f(x) = g(x) + C for some constant C. Then
f0)=g0)+C=5=54+C = C=0= f(x) = gx) =2x + 5 for all x.

gx) = x?> = ¢'(x) = 2x = f(x) for all x. By Corollary 2, f(x) = g(x) + C.

(@ f0)=0 = 0=g0)+C=0+C = C=0= fx)=x> = f2) =4

b f(H)=0 = 0=g)+C=14C = C=—-1 = fX)=x>—1 = f(2) =3

© f(-2)=3 = 3=g(-2)+C = 3=44C = C=—-1 = fR)=x>—1 = f(2) =3

g(x) = mx = g'(x) = m, a constant. If f'(x) = m, then by Corollary 2, f(x) = g(x) + b = mx + b where b is a constant.
Therefore all functions whose derivatives are constant can be graphed as straight lines y = mx + b.

@ y=%+C b y=%+C (© y=%+C

(@ y=x*+C b)) y=x>-x+C ) y=x>+x>-x+C
@y=-—x?=y=14cC b) y=x+14C © y=5-1i+cC

@ y=1ix1? = y=x24C = y=x+C (b) y=2/x+C

() y=2x>-2\/x+C

(a) y:—%c052t+c (b) y:2SiH%+C
(¢) y=—3cos2t+2sini+C

(a) y=tanf+C (b) y/:01/2 = y:%93/2+c (c) y:%93/2—tan0+c
f(x)=x>-x4+C,0=f0)=0-—0+C = C=0 = f(x) =x*—x
g = -1+ 4Cl=g-D=-L+1)P+C=>C=—-1 = g =—1+x*—1

1) =80 +cotf+C;0=r(5) =8(5) +cot()+C=0=2r+1+C=C=-2r—1
=r1(0) =80 +coth — 2w — 1

rt)y=sect—t+C;0=1r(0)=sec(0)—04+C = C=—-1 = r(t) =sect—t—1
V:%:9.8t—|—5:>s:4.9t2+5t+C;ats:10andt:OwehaveC:10:>s:4.9t2+5t+10

v=0=32%t—-2=s=16" -2t +Ciats =4andt = { wehave C =1 = s = 16t — 2t + 1

1 — cos(mt)

v =% =sin(mt) = s = —2cos(rt) + C;ats = 0 and t = 0 we have C = ~

=5 =

5 I

v=2=2cos(%) = s=sin(%) + C;ats =landt = 7> wehave C=1 = s =sin(%) + 1

dt m T T
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45. a=32=v=32t+Cj;atv=20andt = 0we have C; = 20 = v = 32t + 20 = s = 16t + 20t + Cy; at s = 5 and
t=0wehave Cy =5 = s = 16t> + 20t + 5

46. a=98=v=98t+Cj;atv=—3andt=0wehave C; = -3 =v=98t—3 =35 =49t — 3t+ Cy;at s = 0 and
t=0wehave Cy =0 = s = 4.9t — 3t

47. a = —4sin(2t) = v = 2cos(2t) + Cy;atv =2 and t = 0 we have C; = 0 = v = 2cos(2t) = s = sin(2t) + Cy; at s = —3
and t = 0 we have Co = —3 = s = sin(2t) — 3

48. a= Fcos(2) = v=3sin(2) + Cj;atv=0and t = 0 we have C; = 0 = v = 2sin(2) = s = —cos(2) + Cy; at

2SI ST ™
s=—landt=0wehave C; = 0 = s = —cos(%)

49. If T(t) is the temperature of the thermometer at time t, then T(0) = —19° C and T(14) = 100° C. From the Mean Value
Theorem there exists a 0 < ty < 14 such that w = 8.5° C/sec = T'(ty), the rate at which the temperature was
changing at t = ty as measured by the rising mercury on the thermometer.

50. Because the trucker's average speed was 79.5 mph, by the Mean Value Theorem, the trucker must have been going that
speed at least once during the trip.

51. Because its average speed was approximately 7.667 knots, and by the Mean Value Theorem, it must have been going that
speed at least once during the trip.

52. The runner's average speed for the marathon was approximately 11.909 mph. Therefore, by the Mean Value Theorem, the
runner must have been going that speed at least once during the marathon. Since the initial speed and final speed are both 0
mph and the runner's speed is continuous, by the Intermediate Value Theorem, the runner's speed must have been 11 mph
at least twice.

53. Let d(t) represent the distance the automobile traveled in time t. The average speed over 0 <t < 2 is %8(0). The Mean

Value Theorem says that for some 0 < ty < 2, d'(tg) = w. The value d'(ty) is the speed of the automobile at time t

(which is read on the speedometer).
54. a(t) = v/(t) = 1.6 = v(t) = 1.6t + C; at (0, 0) we have C = 0 = v(t) = 1.6t. When t = 30, then v(30) = 48 m/sec.

1_1
55. The conclusion of the Mean Value Theorem yields {‘)T; =—1 = ¢ (a_b) —a—b = c=+/ab.

c? ab

b

56. The conclusion of the Mean Value Theorem yields ;:

2t _ _ atb
a—2c:>c— R

57. f'(x) = [cos x sin(x + 2) +sin x cos (X +2)] — 2sin(x + 1) cos(x + 1) = sin(x + x +2) — sin 2(x + 1)

= sin(2x 4 2) — sin (2x 4+ 2) = 0. Therefore, the function has the constant value f(0) = —sin® 1 ~ —0.7081
which explains why the graph is a horizontal line.

58. (a) f(x) = (x+2)(x+ 1)x(x — 1)(x — 2) = x® — 5x3 + 4x is one possibility.
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(b) Graphing f(x) = x5 — 5x® 4+ 4x and f'(x) = 5x* — 15x? + 4 on [-3, 3] by [—7, 7] we see that each x-intercept of
f’(x) lies between a pair of x-intercepts of f(x), as expected by Rolle's Theorem.

Y
A

y=f(x) 6] y="f(x)
b

\ - x

-3 2| -1 =4 1 3

_4:
_6:
_8.

(c) Yes, since sin is continuous and differentiable on ( — co, 00).

59. f(x) must be zero at least once between a and b by the Intermediate Value Theorem. Now suppose that f(x) is zero twice
between a and b. Then by the Mean Value Theorem, f’(x) would have to be zero at least once between the two zeros of
f(x), but this can't be true since we are given that f'(x) # 0 on this interval. Therefore, f(x) is zero once and only once
between a and b.

60. Consider the function k(x) = f(x) — g(x). k(x) is continuous Y
and differentiable on [a, b], and since k(a) = f(a) — g(a) and
k(b) = f(b) — g(b), by the Mean Value Theorem, there must
be a point ¢ in (a, b) where k’(c) = 0. But since
K'(c) = f'(c) — g'(c), this means that f'(c) = g’(c),and c is a
point where the graphs of f and g have tangent lines with the
same slope, so these lines are either parallel or are the same

line.

61. f/(x) < 1for1 < x <4 = f(x) is differentiable on 1 < x < 4 = fis continuous on 1 < x < 4 = f satisfies the
conditions of the Mean Value Theorem =- w =f'(c)forsomecinl <x <4=1f'(c)<1= w <1
= f(4) — f(1) <3

62. 0 < f'(x) < § forall x = f'(x) exists for all x, thus f is differentiable on (—1, 1) = f is continuous on [—1, 1]

= f satisfies the conditions of the Mean Value Theorem = % =1f'(c) forsomecin[-1,1] = 0 < w <
=0<f(l1)—f(—1) < 1.Since f(1) — f(—1) < 1 = f(1) < 1 +f(—1) < 24 f(—1), and since 0 < f(1) — f(—1)

we have f(—1) < f(1). Together we have f(—1) < f(1) < 2 4 f(—1).

1
2

63. Let f(t) = cost and consider the interval [0, x] where X is a real number. f is continuous on [0, x| and f is differentiable on

(0,x) since f'(t) = —sint = f satisfies the conditions of the Mean Value Theorem = % = f’(c) for some c in

[0,x] = 2= = —ginc. Since =1 <sinc < 1= —1 < —sinc < 1= —1 < €= <[ [fx >0, -1 < ©x=1 <]
= —x<cosx— 1 <x=|cosx— 1| <x=|x]|.Ifx <0, —1§%§1:>—x cosx—1 x
=x<cosx—1<—x= —(—x) <cosx — 1 < —x=|cosx — 1| < —x = | x|. Thus, in both cases, we have

|cosx — 1| < |x|.Ifx =0, then [cos0 — 1| = |1 — 1] = |0] < |0], thus [cosx — 1| < | x| is true for all x.

64. Let f(x) = sin x for a < x < b. From the Mean Value Theorem there exists a ¢ between a and b such that

snbosSind — gos ¢ = —] < Snposind L] o |sibosina| <] = |sinb —sina| < [b—al.

65. Yes. By Corollary 2 we have f(x) = g(x) + ¢ since f'(x) = g'(x). If the graphs start at the same point x = a,
then f(a) = g(a) = ¢ =0 = f(x) = g(x).
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66. Assume fis differentiable and |f(w) — f(x)| < |w — x| for all values of w and x. Since f is differentiable, f’(x) exists and

f'(x) = im W) =19 ysing the alternative formula for the derivative. Let g(x) = |x|, which is continuous for all x.

W —X

fw) — f(x)

W —X

7“(“”) (I)l Since

By

= lim

'(x)] = ‘ lim f<Wv§:)f(<X>’ = lim

[f(w) — f(x)| < |w — x| for all w and x = w <1 as long as w # x. By Theorem 5 from Chapter 2,
£00] = Jim =l < gim 1= 1= ()] < 1= -1 <X < L.

67. By the Mean Value Theorem we have t(b) t(‘"‘) =

we have f(b) — f(a) < 0 = f'(c) < 0.

(c) for some point ¢ between a and b. Since b — a > 0 and f(b) < f(a),

68. The condition is that f’ should be continuous over [a,b]. The Mean Value Theorem then guarantees the

f(b) f(d)

existence of a point ¢ in (a, b) such that = f'(c). If f’ is continuous, then it has a minimum and

maximum value on [a, b], and min ' < {’ (c) g max f’, as required.

69. f'(x) = (1 +x* cos x)71 = f(x) = — (1 + x* cos x)72 (4x3 cos x — x* sin x)
= —x3 (1+ x* cos x)_2(4 cos x —xsinx) < 0for0 < x <0.1 = f'(x)is decreasing when 0 < x < 0.1
= min f’ ~ 0.9999 and max f' = 1. Now we have 0.9999 < "®2=1 <1 = 0.09999 < f(0.1) — 1 < 0.1
= 1.09999 < £(0.1) < 1.1.

70. /() = (1 —x4)"" = "(x) = — (1 — x}) 77 (—4x%) = > 0for0 < x <0.1 = f'(x)is increasing when

4x3
(1—x4?
0<x<0. = minf = 1and max f' = 1.0001. Now we have 1 < "2=2 < 1,0001
= 0.1 < f(0.1) — 2 < 0.10001 = 2.1 < f(0.1) < 2.10001.

71. (a) Suppose x < 1, then by the Mean Value Theorem w <0 = f(x) > f(1). Suppose x > 1, then by the
Mean Value Theorem =1 > 0 = f(x) > f(1). Therefore f(x) 1 for all x since f(1) = 1.
(b) Yes. From part (a), lirr% f(x) f(l) <0and lim f("; :ﬁ(l) 0. Since f’(1) exists, these two one-sided
X —

x — 1t

limits are equal and have the value f'(1) = f'(1) <O0andf’(1) 0 = f'(1) =0.

f(b) f(a) = f

72. From the Mean Value Theorem we have (c) where c is between a and b. But f’'(¢c) =2pc+q=0

has only one solution ¢ = — %. (Note: p ;& 0 since f is a quadratic function.)

4.3 MONOTONIC FUNCTIONS AND THE FIRST DERIVATIVE TEST

1. (a) f'(x) =x(x—1) = critical points at 0 and 1
(b) f'=+++|———|+++ = increasing on (—o0, 0) and (1, co), decreasing on (0, 1)
0 1

(¢) Local maximum at X = 0 and a local minimum at x = 1

2. (a) f'(x) =(x—1)(x+2) = critical points at —2 and 1
(b) f'=4++]| ——— | +++ = increasing on (—oo, —2) and (1, o), decreasing on (—2,1)
-2 1

(¢) Local maximum at x = —2 and a local minimum at x = 1

3. (a) f'(x) = (x— 1)’(x+2) = critical points at —2 and 1
(b) f'=———| +++ | +++ = increasing on (-2, 1) and (1, co), decreasing on (—oo, —2)
—2 1
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(a)
(b)
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(a)
(b)
©
(a)
(b)
©
(a)
(b)
(©)

(a)
(b)
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No local maximum and a local minimum at x = —2

f'(x) = (x — 1)?(x +2)?> = critical points at —2 and 1

f'=+++| +++ | +++ = increasing on (—oo, —2) U (—2,1) U (1, 00), never decreasing
-2 1

No local extrema

f'(x) = (x — 1)(x +2)(x — 3) = critical points at —2, 1 and 3

f'=———| +++ | ——— | +++ = increasing on (—2, 1) and (3, 00), decreasing on (—oco, —2) and (1, 3)
—2 1 3

Local maximum at x = 1, local minima at x = —2 and x = 3

f'(x) = (x = 7)(x + 1)(x +5) = critical points at —5, —1 and 7

f'=———| ++4 | ——— | +++ = increasing on (—5,—1) and (7, c0), decreasing on (—oo, —5) and (—1,7)
-5 -1 7

Local maximum at x = —1, local minimaatx = —5andx =7

f'(x) = x+2> => critical pointsatx =0, x = 1 and x = —2

f'=+++)(———| ———| +++ = increasing on (—co, —2) and (1, 00), decreasing on (—2,0) and (0, 1)
-2 0 1

Local minimum at x = 1

f'(x) = % = critical pointsatx =2, x = —4,x = —1,and x = 3

f'=+++| —= ) +++ | ———)(+++ = increasing on (—oo, —4), (—1,2) and (3, 00), decreasing on
—4 —1 2 3

(—4,—1) and (2,3)

(¢) Local maximum at Xx = —4 and x = 2

(@ f'x)=1- X4—2 = sz—;“ => critical points at x = —2,x =2 and x = 0.

(b) f'=+++]| ———=)———| +++ = increasing on (—o0, —2) and (2, o), decreasing on (—2,0) and (0, 2)
— 0 2

(¢) Local maximum at x = —2, local minimum at x = 2

(a) 'x)=3— T = 3‘/\;— = critical points at x =4 and x =0

(b) f'=(———| +++ = increasing on (4, 00), decreasing on (0, 4)

0 4

(¢) Local minimum at x = 4

(@) f'(x) =x"'/3(x + 2) = critical points at x = —2 and x = 0

(b) f'=+++| ———)(+++ = increasing on (—oo, —2) and (0, ), decreasing on (-2, 0)
-2 0

(¢) Local maximum at Xx = —2, local minimum at x = 0

(a) f'(x) =x"/2(x — 3) = critical points at x = 0 and x = 3

(b)

©

)

=(———| 4+++ = increasing on (3, 00), decreasing on (0, 3)
0 3

No local maximum and a local minimum at X = 3

f/(x) = (sinx — 1)(2cosx 4+ 1), 0 < x < 27 = critical points atx = J,x = &, andx = ¥
=[-—— 7|r 7772| +++4| 7772] = increasing on (%, %7), decreasing on (0,3), (3
s

s 27 4z
2 3 3
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4u

(¢) Local maximum at X = 3 and x = 0, local minimum at x = 2 5 and x = 27
. (a X) = (sinX + cos X)(sin X — cos X), X 7 = critical pointsat x = Z,x = 2 x = 2% andx = £
14 )f’ + 0<x<2 tical points at x = § 3 % andx =7
=|——-— ——— ——— = increasingon (%, =) and (2F, ‘£ ecreasing on
b | +++ +++ gon (Z,3) and (3, Ir), d gon (0,%),
0 3m 2
4 4 4 4
3t 5 7
(% °F) and (5, 27)
(¢) Local maximumatx =0, x = 3T and x = Z¥, local minimum atx = 7, x = 3% and x = 27

15. (a) Increasing on (—2,0) and (2,4), decreasing on (—4, —2) and (0, 2)
(b) Absolute maximum at (—4,2), local maximum at (0, 1) and (4, —1); Absolute minimum at (2, —3), local minimum at
(727 0)

16. (a) Increasing on (—4,—3.25), (—1.5,1), and (2, 4), decreasing on (—3.25, —1.5) and (1,2)
(b) Absolute maximum at (4, 2), local maximum at (—3.25, 1) and (1, 1); Absolute minimum at (—1.5, —1), local
minimum at (—4,0) and (2, 0)

17. (a) Increasing on (—4,—1), (0.5,2), and (2,4), decreasing on (—1, 0.5)
(b) Absolute maximum at (4, 3), local maximum at (—1,2) and (2, 1); No absolute minimum, local minimum at
(—4, —1)and (0.5, —1)

18. (a) Increasing on (—4,—2.5), (—1,1), and (3, 4), decreasing on (—2.5, —1) and (1, 3)
(b) No absolute maximum, local maximum at (—2.5, 1), (1,2) and (4, 2); No absolute minimum, local minimum at
(—=1,0) and (3, 1)

19. (@) gt) =—t*—3t+3 = ¢(t) = —2t—3 = acritical pointatt = — % ;g = —|—++?1/2—_—, increasing on
(—00, — 3), decreasing on (— 3, 00)
(b) local maximum value of g (_ %) 2? absolute maximum is %41 att = — %
20. (a) g(t) = -3 +9t+5=¢/() = —6t+9 = acritical pointatt =3 ;g = ++—|})}2———, increasing on (—o0, 3),

decreasing on (3,

(b) local maximum value of g (%) = % att = %, absolute maximum is % att = %

o)

21. (a) h(x) = —x® +2x> = h/(x) = —3x%> +4x = x(4 — 3x) = critical points at x = 0,

W

= K =——— (|) —|—+4;1}3———, increasing on (0, 1) , decreasing on (—o0,0) and (%, c0)

(b) local maximum value of h (3) = 22 at x = %; local minimum value of h(0) = 0 at x = 0, no absolute extrema

22. () h(x)=2x% — 18x = h'(x) = 6x> — 18 = 6 (x + \ﬁ) (x - ﬁ) — critical points atx = % /3

= h =+++| ———| +++, increasing on (foo, ,\/g) and (\/5, oo) , decreasing on (,\/57 \/§>
V3 V3

(b) alocal maximum is h (_\/5) = 12\/§ atx = —\/5; local minimum is h (\/5) = —12\/§ atx = \/3, no absolute

extrema
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29.

30.

31.
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(a)

(b)

(a)
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(a)

(b)

(a)

(b)

()

(b)

(a)

(b)

UPLOADED BY AHMAD JUNDI

Section 4.3 Monotonic Functions and the First Derivative Test 187

f(0) = 30° — 46> = f'(6) = 60 — 126> = 60(1 — 20) = critical pointsat 6§ =0, 1 = ' = ——— | +4++| ———,
0 1/2
increasing on (0, §) , decreasing on (—o0,0) and (3, cc)

alocal maximum is f (1) = } at§ = 7, a local minimum is f(0) = 0 at § = 0, no absolute extrema

f(0) = 60 — 603 = F/(0) = 6 — 302 = 3 (\/5—9) (ﬁw) — critical points at § = + /2 =

f'=———| +4++| ———, increasing on (—\/5, \/5), decreasing on (—oo, —\/E) and (\/E, oo)
V2 V2

a local maximum is f 2) =4+/2atf = +/2, alocal minimumisf(—+/2) = —4ﬁ atf = —\/5, no absolute
(V2) =4v2a0= 2 (-v2)

extrema

f(r) = 3r° + 16r = f'(r) = 9r> + 16 = no critical points = f’ = 44+, increasing on (—o0, 00), never
decreasing
no local extrema, no absolute extrema

h(r) = (r +7)> = b'(r) =3(r+7)> = acritical pointatt = —7 = h’ = +++ | +-++, increasing on
-7
(=00, —7) U (=7, 00), never decreasing
no local extrema, no absolute extrema
f(x) = x* = 8x2 + 16 = f/(x) = 4x3 — 16x = 4x(x + 2)(x — 2) = critical points at x = 0 and x = =+ 2
= f'=———| +++ | ——— | +++, increasing on (—2, 0) and (2, o), decreasing on (—oo, —2) and (0, 2)
—2 0 2

a local maximum is f(0) = 16 at x = 0, local minima are f ( £2) = 0 at x = =+ 2, no absolute maximum; absolute
minimumisQatx = +2

gx) =x* —4x3 4+ 4x% = g'(x) = 4x3 — 12x% + 8x = 4x(x — 2)(x — 1) = critical points atx = 0, 1, 2
= g =———|++4++ | ——— | +++, increasing on (0, 1) and (2, c0), decreasing on (—oo, 0) and (1, 2)
0 1 2

a local maximum is g(1) = 1 at x = 1, local minima are g(0) = 0 at x = 0 and g(2) = 0 at X = 2, no absolute
maximum; absolute minimum is O at x = 0, 2

Ho =3t'—¢® = H(@©=6t—6t° =61 +t)(1 —t) = critical points att = 0, + 1
= H =+++4| ——— | +++ | ———, increasing on (—oo, —1) and (0, 1), decreasing on (—1, 0) and (1, 00)
—1 0 1
the local maxima are H(—1) = % att = —1and H(1) = % att = 1, the local minimum is H(0) = 0 at t = 0, absolute

maximum is % att = = 1; no absolute minimum

K(t) = 15t — 5 = K/(t) = 45t> — 5t* = 5t>(3 + t)(3 —t) = critical points att = 0, +3

= K =———| +++4+ | +++ | ———, increasing on (—3,0) U (0, 3), decreasing on (—oo, —3) and (3, 00)
-3 3
a local maximum is K(3) = 162 att = 3, a local minimum is K(—3) = —162 at t = —3, no absolute extrema
f(x)=x—6yx—-1=>f'x)=1- ;_l = % => critical points at x = 1 and x = 10
= f’ = ( ———| +++, increasing on (10, co), decreasing on (1, 10)
1 10
a local minimum is f(10) = —8, a local and absolute maximum is f(1) = 1, absolute minimum of —8 at x = 10
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32. (@) gx)=4/x—-x>+3= gx) = T —2x =2 \?5 = critical points at x = 1 and x = 0

=g’ = (() +++ { ———, increasing on (0, 1), decreasing on (1, co)

(b) alocal minimum is f(0) = 3, a local maximum is f(1) = 6, absolute maximum of 6 at x = 1

33 @ g0 =xvV8-x=x8-x)" = g =68-x)"+x(1) (8 —x2) (-2 = sz;f;(z(;‘;”

= critical pointsatx = +2, +2/2 =g =( ——— | +++| ———) ., increasing on (—2,2), decreasing on

—2v2 2 2 22
(—2ﬁ, —2) and (2,2ﬁ)
(b) local maxima are g(2) =4atx =2and g (—2\/5) =0atx = —2\/5, local minima are g(—2) = —4 at

x=—2andg (2\/5) =0atx = 2\/5, absolute maximum is 4 at x = 2; absolute minimum is —4 at x = —2

34. (@) g0 =xV/5-x=xG -2 = gx) =2xG -0 +x>(3) 5 -0V}~ = 52%5%) = critical points at
x=0,4and5 = ¢ = ——— | +++ | ——— ), increasing on (0, 4), decreasing on (—oco, 0) and (4, 5)
0 4 5

(b) alocal maximum is g(4) = 16 at x = 4, a local minimum is 0 at X = 0 and x = 5, no absolute maximum; absolute
minimumis 0 atx =0, 5

2 2x(x—2 -3)a —Hx-1 - .
35. (@) fx)=2= = f'(x) = A~ (l (;)- ) — & (xj(g)z ) = critical points at x = 1, 3

= = +++ { ———%( - :|)) ++4+, increasing on (—oo, 1) and (3, c0), decreasing on (1, 2) and (2, 3),

discontinuous at x = 2
(b) alocal maximum is f(1) = 2 at x = 1, a local minimum is f(3) = 6 at x = 3, no absolute extrema

/ _O3EB24+ D) —xP6x) _ 3xE(x3+1)
= 0= (3x2+1)? TGty

= f' = 4+++ | +++, increasing on (—oo, 0) U (0, o), and never decreasing
0

36. (a) f(x) = = acritical pointat x = 0

<3
3x2+1

(b) no local extrema, no absolute extrema
37. (@) f(x) =x"3(x +8) =x"? +8x!1/% = f/(x) = $x!/3 + §x72/3 = & ’ﬁf) = critical points at x = 0, —2
= f'= ———| +++)(+++, increasing on (—2,0) U (0, 00), decreasmg on (—oo0, —2)
—2 0

(b) no local maximum, a local minimum is f(—2) = —6 32~ —756atx = —2, no absolute maximum; absolute

minimum is —6 3\/5 atx = =2

38. (a) g(x) =x3(x45) =x34+5x23 = g(x) = §x2/3 + Qx-1/3 = 5(";9 = critical points at x = —2 and

x=0 = g =+4+++| ———)(+++, increasing on (—oo, —2) and (0, 00), decreasing on (—2, 0)
-2 0

(b) local maximum is g(—2) = 3 3\/Z ~ 4.762 at x = —2, a local minimum is g(0) = 0 at x = 0, no absolute extrema
Tx+2) (V7x -2
39. (@) h(x) =x3(x? —4) =x73 —4x1/? = KW(x) = Ix¥? - $x725 = % = critical points at

x =0, \i/—% = h=+++]| ——=)(——— | +++, increasing on (foo, \’/—%) and (\ﬁ’ ) , decreasing on

—2/v7 0 2T
(#:0) and (0. )
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2 _ 2432

(b) local maximum is h (‘—) = %5 ~3.12atx = &—% the local minimum is h (%) =

_uva

75~ ~ —3.12, no absolute

)

extrema

40. (a) k(x) =x*3 (x> —4) =x*% —4x?? = K(x) = §x5/3 — %x’l/g = 864D critical points at

3
x=0,+1 = kK =———| +++4)(——— | +++, increasing on (—1,0) and (1, o), decreasing on (—oo, —1)
-1 0 1
and (0, 1)
(b) local maximum is k(0) = 0 at x = 0, local minima are k (4 1) = —3 at x = = 1, no absolute maximum; absolute
minimum is —3 atx = + 1
41. (a) f(x) =2x —x? = f'(x) =2 — 2x = acritical pointatx = 1 = ' = +++| ———] and f(1) = 1 and f(2) = 0
1 2
a local maximum s 1 at x = 1, a local minimum is 0 at x = 2.
(b) There is an absolute maximum of 1 at X = 1; no absolute minimum.
(©)
Y
2
y=2x-x*
1
-1 1 ; *
-1
-2
42. (@) fx)=(x+1)? = f/(x) =2(x + 1) = acritical pointatx = —1 = ' = ——— | +++]and f(—1) = 0, f(0) = 1
-1 0
= alocal maximumis 1 at x = 0, a local minimumisQatx = —1
(b) no absolute maximum; absolute minimum is 0 at x = —1
© f)
fey=@+17
Jt 3 2 -l 1 x
1k
43. (a) gx)=x?—4x+4 = g (x) =2x —4 =2(x —2) = acritical pointatx =2 = g =[ ——— | +++ and
1 2

g(l)=1,g2) =0 = alocal maximum s 1 at x = 1, a local minimum is g(2) =0atx =2
(b) no absolute maximum; absolute minimum is 0 at x = 2

()
g(x)
5
41 2
3 ) g(x)=x"-4x+4
2_
1
x
1 2 3 4
-1l

44. (@) gx) = —x2—6x—9 = g'(x) = —2x — 6 = —2(x +3) = acritical pointatx = -3 = g =[ +++| ——— and
-3

g(—4) = —1,g(—3) = 0 = alocal maximum is O at x = —3, a local minimum is —1 at x = —4
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(b) absolute maximum is 0 at x = —3; no absolute minimum

(©

8(x)

45. (@) f)=12t—¢ = /() =12 -3 =32+ (2 —1t) = critical pointsatt = +2 = f' =[] ——— | +++ | ———
-3 - 2
and f(—3) = -9, f(—2) = —16, f(2) = 16 = local maxima are —9 att = —3 and 16 att = 2, a local minimum is
—l6att= -2
(b) absolute maximum is 16 at t = 2; no absolute minimum
()
£(t)
20 f(t)=12t-t
10|
-3 -2 -1/ 1 2 3\a s
10 |
-20

46. (a) f(t) =13 —3t2 = f'(t) = 3t> — 6t = 3t(t — 2) = critical pointsatt =0 and t = 2

= =44+ ———| +++i]’> and f(0) = 0, f(2) = —4,f(3) = 0 = alocal maximumisOatt=0andt=3,a
0 2

local minimum is —4 att = 2
(b) absolute maximum is O at t = 0, 3; no absolute minimum

(©)

()

fo=£-32

47. (a) h(x) = "{ —2x2+4x = h(x) =x*> —4x+4 = (x —2)? = acritical pointatx =2 = h' =[ +++ | +++ and
0 2

h(0) = 0 = no local maximum, a local minimum is 0 at x = 0
(b) no absolute maximum; absolute minimum is 0 at x = 0

()
h(x)
6
5 3
4 h(x)=—-2x"+4x
3
2
1
~x
1 2 3 4
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48. (a) k(x) =x>+3x>+3x+1 = K'(x) =3x2+6x+3 =3(x+ 1) = acritical point at x = —1
= k'=+++| +++]andk(—1) = 0,k(0) =1 = alocal maximum is 1 at x = 0, no local minimum
-1 0

(b) absolute maximum is 1 at x = 0; no absolute minimum

(c)
k(x)
2k
k(.x‘)=x3+3x2 +yl/
75/7'1 *
1+
49. (a) f(x) =Vv25—-x*="f'(x) = = = critical points at x = 0, x = =5, and x = 5
=f'=( +4++| ———),f(=5) =0,(0) = 5, f(5) = 0 = local maximum is 5 at x = 0; local minimum of 0 at
-5 0 5
x=-5andx =5
(b) absolute maximum is 5 at x = 0; absolute minimum of 0 atx = —5and x = 5
(c)
f(z)

f(x)=V25-%

50. (a) f(x) =vx2—2x—-3,3<x<o00=1f'(x)= \/% = only critical pointin3 < x < coisatx =3

= f'=[ +++, f(3) = 0 = local minimum of 0 atx = 3, no local maximum
3
(b) absolute minimum of 0 at x = 3, no absolute maximum

()

F)

\ fo)y="N2- 2\—/
1 1 1 1

—2—1|1234

X

51 (@) g(x) =32,0<x<1=¢g'(x)= % = only critical pointin 0 < x < Iisx =2 — /3 ~ 0.268

P _ -V ini V3 _9_
=g —([) 0.2|68+++%’ g<2 \/3) = wise ™ 1.866 = local minimum of PR atx =2 \/5, local

maximum at x = 0.

V3

(b) absolute minimum of pW T atx =2 — \/3, no absolute maximum
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(©)

]

x—

8®="7;

> X

52. (a) g(x) = 4f—2x2, 2<x<1l=g'(x)= > = only critical pointin 2 < x < lisx =0

8x
4—x)

=g =( ——— | +++].8(0) = 0 = local minimum of 0 atx = 0, local maximum of } at x = 1.
-2 0 1

(b) absolute minimum of 0 at x = 0, no absolute maximum

(©)

53. (a) f(x) =sin2x,0 < x < 7= f'(x) = 2c0s 2x, f'(x) = 0 = cos 2x = 0 => critical points are x = 5 and x = 37

=1 = [+++l———3| +++7]r £(0) =0,f(2) =1,£(3F) = —1, f(r) = 0 = local maxima are 1 atx = % and 0
4 4
at x = 7, and local minima are —1 at x = % and 0 atx = 0.
(b) The graph of f rises when ' > 0, falls when f’ < 0,
and has local extreme values where f’ = 0. The function
f has a local minimum value at x = 0 and x = %’r, where

the values of f’ change from negative to positive. The

function f has a local maximum value at x = 7 and (0,0)
x = 7, where the values of f’change from positive to

negative.

54. (a) f(x) =sinx —cosx,0 < x < 27 = f'(x) = cosx + sinx, f'(x) = 0 = tanx = —1 => critical points are x = 37 and

x=D=f = ([)+++3| ———7L+++2] (0) = —1,1(3F) = V2, f(Ir) = -2, f(2m) = —1 = local maxima are
T 7 m
\/Eatx = 37” and —1 at x = 27, and local minima are f\/i atx = %’r and —l atx = 0.

(b) The graph of f rises when ' > 0, falls when f’ < 0,

and has local extreme values where £/ = 0. The function 0%

f has a local minimum value at x = 0 and x = %’r, where G

the values of f’ change from negative to positive. The %_{X\ s
function f has a local maximum value at x = 27 and . ! ! / .
X = %Tﬁ’ where the values of f’change from positive to » ANV 2
negative. 2 Hw=sinx—cosx, 0<x<2m

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI

Section 4.3 Monotonic Functions and the First Derivative Test 193

55. (a) f(x) = \/3cosx +sinx,0 < x <27 = f'(x) = —/3sinx + cosx, f/(x) = 0 = tanx = ﬁ => critical points are

| ———| +++2] LH0) = /3, £(%) =2, () = —2,f(2m) = /3 = local
s T us
6

3

x:%andx:%éf/:([)—i——i-—i—

(=)}

maxima are 2 at X = % and /3 at x = 27, and local minima are —2 at X = %T and /3 atx = 0.
(b) The graph of f rises when ' > 0, falls when f’ < 0,
and has local extreme values where f/ = 0. The function

(=)
f has a local minimum value at x = 0 and x = %’r, where (22:453)
the values of f’ change from negative to positive. The
> x
function f has a local maximum value at x = 27 and n =L 2n

x = %, where the values of f’change from positive to

negative. (&-2)

56. (a) f(x) = —2x+tanx, —F <x < § =f'(x) = =2 +sec’x, f'(x) = 0 = sec’ x = 2 = critical points are

x=-Tandx=2=f = (+++| ——— | +++) . f(-3) =Z - 1,f(%) =1 — = local
-2 3 3 2
maximum is 7 — 1 at x = —7, and local minimumis 1 — 7 atx = 7.

(b) The graph of f rises when f’ > 0, falls when ' < 0,

and has local extreme values where f’ = 0. The function vy

f has a local minimum value at x = %, where the values

of f’ change from negative to positive. The function f -3

has a local maximum value at x = —7, where the values 7 \Kg_ 5 !

of f’change from positive to negative. -
foy=tanx-21 T <x<?

2n

57. (@) f(x)=3—2sin(3) = f'(x) =1 —cos (3),f'(x) =0 = cos (}) =1 = acritical pointat x = &

= f :(g——— |/ +—|—+2] and f(0) = 0,f (%) = 7 — /3, f27) = 7 = local maxima are 0 at x = 0 and
21/3 ™

_ f, o T _or
at x = 2, a local minimum is - \/gatx— 5

(b) The graph of f rises when f’ > 0, falls when f’ < 0, o) = % ~ 2sin ; 0O<x<2r
and has a local minimum value at the point where f’ y \
3
changes from negative to positive.
2
f'x)
1
0 1 3 4 5 6 X
58. (a) f(x) = —2cosx —cos’x = f'(x) = 2sin x + 2 cos x sin x = 2(sin x)(1 + cos X) = critical points at x = —, 0, 7
= f'=[ ——— | +++]and f(—m) = 1,f(0) = =3, f(r) = 1 = alocal maximumis 1 at x = + 7, a local
-7 0 T

minimumis —3 atx =0
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(b) The graph of f rises when ' > 0, falls when f’ < 0,

and has local extreme values where ' = 0. The £
function f has a local minimum value at x = 0, where r
|
the values of f' change from negative to positive. L\ ) L/
-3 2 1 0 1 2 3

flx) =—2cos x — cos? x, —-m<x<w

59. (a) f(x) =csc?x —2cotx = f'(x) = 2(csc x)(—csc x)(cot x) — 2 (—csc?x) = —2 (csc? x) (cot x — 1) = a critical
pointatx =% = f'=(———| ++4+) and f(%) =0 = no local maximum, a local minimum is 0 at x = 7
0 /4 i
(b) The graph of f rises when f’ > 0, falls when ' < 0, y S®=esctx-2cotr, 0<x<n
and has a local minimum value at the point where 4 /
f” = 0 and the values of f’ change from negative to
positive. The graph of f steepens as f'(x) — = oo. 2
of o5/ 1 15 3 25 3%
2
f'&)
<4

60. (a) f(x) =sec’x —2tanx = f’(x) = 2(sec x)(sec x)(tan x) — 2 sec?>x = (2 sec?’x) (tan x — 1) = a critical point

atx =7 = f'=( ———| +++) andf(%) =0 = no local maximum, a local minimum is 0 at x = 7
—m/2 T/4 /2

(b) The graph of f rises when ' > 0, falls when f’ < 0,
and has a local minimum value where f’ = 0 and the

values of ' change from negative to positive. fw=se e -2anx\_ [

Tex<™ 2

2 2

1 1 1 x
-15 -1 -05 0)/1 1.5

4
o /

61. h(6) =3cos () = W@ =—-2sin(4) = h=[—-——1,(0,3) and (27, —3) = alocal maximumis 3 at 6§ = 0,
0 27

alocal minimum is —3 at§ = 27

62. h(d) =5sin(5) = W@ =3cos(§) = W' =[+++],(0,0)and (r,5) = alocal maximum is 5 at § = 7, a local
0 s

minimumis 0 atd =0

63. (a)
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64. (a) b
3 3L
1 y =) 1
T TR '
© @
3+ 3
y=f)
1+ 1
[ 3 ’ , L,
1 3
65. (a) (b)
y
2 y=g()
0 2 x
66. () (b)

1
X

67. The function f(x) = x sin( ) has an infinite number of local maxima and minima. The function sin x has the following

properties: a) it is continuous on (—oo, 00); b) it is periodic; and c) its range is [—1, 1]. Also, for a > 0, the function % has

a range of (—oo, —a] U [a, 00) on {—é, ﬂ .In particular, ifa = 1,then 1 < —lor! 1 whenxisin[~1, 1]. This means

sin(1) takes on the values of 1 and —1 infinitely many times in times on the interval [—1, 1], which occur when

1 _ iy
X i:2

in the interval [—1,

interval [—1,0], —1 <sin(1) < 1 and since x < 0 we have —x

and y = —x. Since

and y = —x infinit

3y sm _ 42
L2 T ox=22 1+

2 2

+ =, .
37> 5w
1]. On the interval [0, 1], —1 <'sin(1) < 1 and since x > 0 we have —x < xsin(1) < x. On the

o)

X
sin( ) oscillates between 1 and —1 infinitely many times on [—1, 1] then f will oscillate between y = x

... Thus sin( 1) has infinitely many local maxima and minima

X

2 x sin( x. Thus f(x) is bounded by the lines y = x
1

ely many times. Thus f has infinitely many local maxima and minima. We can see from the graph (and

verify later in Chapter 7) that lim x sin( 1) = 1land lim x sin( 1) = 1. The graph of f does not have any absolute

X X

maxima., but it does have two absolute minima.
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68. f(x):ax2+bx+c:a(x2+9x)+c:a(x2+hx+ %) —g—kc:a(x—k 2%)2—1’2;i a parabola whose

vertex is at x = — 2 . Thus when a > 0, f is increasing on (52, c0) and decreasing on (—oo, 52) ; when a < 0,
f is increasing on (— 00, 3. ) and decreasing on ( 2:, ) . Also note that f'(x) = 2ax + b = 2a (X + %) = for
a>0,f'=———| +++;fora<0,f =—+++| ———.

—b/2a —b/2a

69. f(x) =ax’+bx=f'(x) =2ax+b,f(1)=2=a+b=2,f'(1)=0=2a+b=0=a=-2,b=4
= f(x) = —2x? + 4x

70. f(x) =ax®* +bx>+cx+d=f'(x) =3ax>+2bx+¢,f(0)=0=d=0,f(1)=-1=a+b+c+d=—
f'0)=0=c=0,f'(1)=0=3a+2b+c=0=a=2,b=-3,c=0,d =0 = f(x) = 2x> — 3x°

4.4 CONCAVITY AND CURVE SKETCHING

1. y= %377 72x+ = y=x2-x-2=x-2)x+1) =y _2x71—2(x7 —) The graph is rising on
(—o0, —1) and (2, oo), falling on (—1, 2), concave up on (3, 00) and concave down on (—oo, 1) . Consequently,
alocal maximum is 2 at x = —1, alocal minimum is —3 at x = 2, and (3}, — 2) is a point of inflection.

2 y= 02244 5y = —dx=x(x2—4) =x(x+2)(x—2) = y' =32 —4= (\/§x+2) (\/ix—z). The
graph is rising on (—2,0) and (2, c0), falling on (—oo, —2) and (0, 2), concave up on (—oo, —%) and (\[ , ) and

concave down on (— \% %) . Consequently, a local maximum is 4 at x = 0, local minima are 0 at x = + 2, and
16
' art

(— \i[ 36) and (% ) e points of inflection.

[

y=22-1" > y=) ) -1 ey=x-1)""y = ———_)1(+++(|)———{(+++

= the graph is rising on (—1, 0) and (1, o0), falling on (—o0, —1) and (0, 1) = a local maximum is % at x = 0, local

M-y e =

y'=4+4+44+4| ———)(———)(———| +++ = the graph is concave up on (foo, 7\/3) and (\/5, oo), concave
_ -1 1
V3 V3
. . . 3¢/4
down on <f\/§ , \/§> = points of inflection at ( + \/5, T)

minima are 0 at x = 4 1;y" = (x> — 1)

4. y=2x3(x2=7) = ¥y =Zx B -T)+ ZxP2x) = 3x7 M (x2 - 1),y ——|—+—|—| ———)(———|+—|—+
= the graph is rising on (—oo, —1) and (1, 00), falling on (—1,1) = a local maximum is 7 atx = 71, a local
minimumis — & atx = 1;y” = —x7/3 (x2 — 1) 4 3x1/3 = 2x!/3 + x /3 = x93 (2x2 + 1),
y" = ———)(+++ = the graph is concave up on (0, co), concave down on (—oc, 0) = a point of inflection at (0, 0).

0
5. y=x+sin2x=y =1+2cos2x,y = [-—— | +++| ———] = thegraphisrisingon (—3,7), falling
—27/3—7/3 /3  27m/3
on (— %7“, %) (%, 2%) = local maxima are — ZT” + 4 atx = — 2” and 5 + \[ atx = %, local minima are
—%—éatx:—gand%ﬁ ‘/TEatx: Ziy'=—-dsin2x,y'=[ ——— | +++|—| +++ 1 = the
—27/3  —m/2 0 /2 27/3

graph is concave up on (— 35 O) and (%, %) , concave down on (— %”, — "—QT) and (0, g) = points of inflection at

(=5:=3) (0,0, and (3, )
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y=tanx —4x = y =sec’x -4,y = ( +++| ———| +++) = the graphisrisingon (—3,— %) and
—-n/2 —7m/3 7T/3 /2

(% "—zr) falling on (— 3 %) = alocal maximum is —\/_ —|— Tatx = , a local minimum is \/_ —Fatx=73;

y” = 2(sec x)(sec x)(tan x) = 2 (sec’x) (tan x), y"’ = (——— | ++4+) = the graph is concave up on (O, 5) ,

—77/2 0 /2

%,O) = a point of inflection at (0, 0)

concave down on (—
If x 0,sin |x| = sin x and if x < 0, sin |x| = sin (—x)
= —sin x. From the sketch the graph is rising on y=sinlx|,-27 < x < 27

(— 37”, — g) . (O, 2) and (3“ 27r) falling on ( 27, — 377) s w2, )| @21

(—Z,0) and (%,3) ; local minima are —1 atx = + 37 (=21, 0) @r.0)

and 0 at x = 0; local maxima are 1 atx = & 7 and 0 at -%,0 J(0,0)(x0) x

X = = 2m; concave up on (—2m, —7) and (7, 27), and (“3m2-1) Gr2-1)
concave down on (—7,0) and (0, 7) = points of inflection
are (—m,0) and (7, 0)

y=2cosx—\2x=y =-2sinx—v2,y=[ —— | 4++| ——— | +++]1 = risingon

T —3w/4 —7/4 5r/4  3m/2
(—%,—%)and (%",37") fallingon( m, —%T) and (—Z,%) = localmaximaare—2—|—7r\/_atx——7r \/7—1—”7\5
atx = — 7 and — 37r\[atx— andlocalm1n1maare—f+ \[atx— %and—ﬁ 5”\/attx— T

y' = —2cosx,y" [ +4+ | ——— | +++1 = concaveupon (—m,—%) and (3, 3), concave down on
—7/2

|
/2 3m/2
(— 5 g) = points of inflection at (—% L) and <g, —@)

Wheny = x? — 4x + 3, theny’ = 2x — 4 = 2(x — 2) and X

y” = 2. The curve rises on (2, o) and falls on (—oo, 2). Ar
At x = 2 there is a minimum. Since y” > 0, the curve is z\
1

concave up for all x.

2,-1)
2r Loc min

Wheny = 6 — 2x — x?, theny’ = —2 — 2x = —2(1 + x) and

y"” = —2. The curve rises on (—oo, —1) and falls on Abs. max. (-1,7)
(—1,00). At x = —1 there is a maximum. Since y'/ < 0, the

curve is concave down for all x.

y=6-2x -2
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12.

13.

15.

. Wheny = x? —3x +3,theny =3x> -3 =3(x — D(x+ 1)

and y” = 6x. The curve rises on (—oo, —1) U (1, 0o) and

falls on (—1,1). Atx = —1 there is a local maximum and at

x = 1 a local minimum. The curve is concave down on
(—00,0) and concave up on (0, o). There is a point of
inflection at x = 0.

When y = x(6 — 2x)?, then y/ = —4x(6 — 2x) + (6 — 2x)?

=123 —x)(1 —x)and y" = —12(3 — x) — 12(1 — x)
= 24(x — 2). The curve rises on (—oo, 1) U (3, 00) and

falls on (1, 3). The curve is concave down on (—oo, 2) and

concave up on (2,00). At x = 2 there is a point of
inflection.

Wheny = —2x3 + 6x2 — 3, then y/ = —6x2 + 12x

= —6x(x—2)andy”’ = —12x + 12 = —12(x — 1). The
curve rises on (0, 2) and falls on (—o00, 0) and (2, c0).
At x = 0 there is a local minimum and at x = 2 a local
maximum. The curve is concave up on (—oo, 1) and
concave down on (1, 00). At x = 1 there is a point of
inflection.

. Wheny =1 —9x — 6x> — x%, theny’ = —9 — 12x — 3x?

=-3x+3)(z+1andy” = —12 — 6x = —6(x + 2).
The curve rises on (—3, —1) and falls on (—o0, —3) and

(—1,00). Atx = —1 there is a local maximum and at
x = —3 alocal minimum. The curve is concave up on
(—00, —2) and concave down on (—2,00). Atx = —2

there is a point of inflection.

Wheny = (x — 2)% + 1, then y = 3(x — 2)? and

y"” = 6(x — 2). The curve never falls and there are no
local extrema. The curve is concave down on (—oo, 2)
and concave up on (2, 00). At x = 2 there is a point
of inflection.

UPLOADED BY AHMAD JUNDI

y

y=x(6-2x)
40 L )
0k ( IOCI.6I1)'1dX.
20F 2 Infl.
10 (2,8)
1 1 1 1 X
-2 2 4 6
=20 3,0
Loc. min.
y
(2, 5) Loc max

Infl
@ 2

I/I T T

=

T T N R |
-3 -1

<
=

0,-3)
Loc min y=-2x>+6x2-3

y=1 —ox—62 -

Loc. max. (-1, 5)

Loc. min. (-3, 1)

2 Infl
@

y=(x-273+1
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. Wheny =1 — (x + 1), theny’ = —3(x + 1)? and

y"” = —6(x + 1). The curve never rises and there are

no local extrema. The curve is concave up on (—oo, —1)
and concave down on (—1,00). Atx = —1 thereis a
point of inflection.

Wheny = x* — 2x2, then y = 453 —4x = 4x(x + D(x — 1)
andy” = 12x> —4 =12 (x + %) (x - %) . The curve
rises on (—1, 0) and (1, oo) and falls on (—oo, —1) and (0, 1).
Atx = =1 there are local minima and at x = 0 a local
maximum. The curve is concave up on <foo, — ﬁ) and

1 11 _
(%,oo) and concave down on (f Ve 7) . Atx =

+1

NG

w

there are points of inflection.

Wheny = —x* 4+ 6x% — 4, theny’ = —4x>® + 12x
= —4x (x + \/5) (x - \/§> andy” = —12x%2 + 12

= —12(x + 1)(x — 1). The curve rises on (—oo, —\/5)

and (0, \/3) , and falls on (—\/5, 0) and (\/5, oo) . At

X= =+ \/gthere are local maxima and at x = 0 a local
minimum. The curve is concave up on (—1, 1) and concave
down on (—oo, —1)and (1,00). Atx = =+ 1 there are points
of inflection.

. Wheny = 4x3 — x*, theny’ = 12x% — 4x® = 4x?(3 — x) and

y” = 24x — 12x> = 12x(2 — x). The curve rises on (—o0, 3)
and falls on (3, 00). At x = 3 there is a local maximum, but
there is no local minimum. The graph is concave up on

(0, 2) and concave down on (—oo, 0) and (2, oo). There are
inflection points at x = 0 and x = 2.

When y = x* + 2x?, then y’ = 4x® + 6x> = 2x*(2x + 3) and
y" = 12x% + 12x = 12x(x + 1). The curve rises on

(= 3,00) and falls on (—oo, — 2) . There is a local
minimum at X = — % but no local maximum. The curve is
concave up on (—oo, —1) and (0, o0), and concave down on

(—1,0). Atx = —1 and x = 0 there are points of inflection.

Infl.

(5
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D]

1

y=1-(x+
x
y
y=xt_2:2
F1
Loc max
©,0
I 1 N 1 1
-2 -1 1 2
Loc min Loc min
-1,-1) r 1,-1)
(13, -59) | (113, -519)
Infl = Infl
y
Abs. max. Abs. max.
V3,5 (3,5

Infl.
L1

Infl.
1,1

x

y= Aty -4

(0,—4) Loc. min.

(3,27)
271k Loc max
21
L2, 16) y=axd gt
15 Infl
ol
Infl -
003 [ | .
L1 2 3 \4
y
¥y =2
0,0
Infl. | 1,
-1,-1)
(-3/2,-27/16)
Abs. min.
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21.

22.

23.

24.

25.

Chapter 4 Applications of Derivatives

Wheny = x® — 5x%, then y/ = 5x* — 20x3 = 5x3(x — 4) and
y" = 20x3 — 60x? = 20x?(x — 3). The curve rises on

UPLOADED BY AHMAD JUNDI

(—00,0) and (4, 00), and falls on (0, 4). There is a local
maximum at x = 0, and a local minimum at x = 4. The
curve is concave down on (—o0, 3) and concave up on
(3, 0). At x = 3 there is a point of inflection.

Wheny =x (3 —5)" theny' = (3 = 5)" +x@® (3 - 5)° (3)
(5-5) (3 -5).andy" =3(3 -5 (3) (3 - 5)

+ (3 - 5)3 (3)=5G3- 5)2(x — 4). The curve is rising

on (—o0, 2) and (10, co), and falling on (2, 10). There is a
local maximum at X = 2 and a local minimum at x = 10.

The curve is concave down on (—oo, 4) and concave up on

Loc min

(4,00). Atx = 4 there is a point of inflection.

Wheny = x + sin X, theny’ = 1 + cos x and y” = —sin x. y
The curve rises on (0, 27). Atx = 0 there is a local and
absolute minimum and at x = 27 there is a local and absolute
maximum. The curve is concave down on (0, 7) and concave
up on (7, 27). At x = 7 there is a point of inflection.

Abs. max.
(2,512)
Infl.
4,324
“.324) gt
=9
Infl. (10, 0)
—e X
Max
2 | 2, 2)
y=x+sinx
(m, m)
g
Infl
Min | i .
0 T 2

Wheny = x — sin x, theny’ = 1 — cos x and y” = sin x.
. . y
The curve rises on (0,27). At x = 0 there is a local and Abs. max. (277, 27)
absolute minimum and at x = 27 there is a local and absolute 6r
. . 5+
maximum. The curve is concave up on (0, 7) and concave .\ ot
— nfl. L
down on (7, 27). At x = 7 there is a point of inflection. ,L @ e
Abs. 2
min. | |-
(0’ 0) 1 1 Il 1 1 X
1 2 3 4 5 6
Wheny = v/3x — 2 cosx, then y’ = \/§—|—2sinxand s
" __ 2 [ : 47 Loc max
= 2 cos x. The curve is increasing on =) and _
y g (07 3 ) 106 (4m3, 4Bar3 + 1) (Z”ftfr:axz)
5 i 4w Sm - 8+
(3£,2n), and decreasing on (%, 3F). Atx = 0 there oL ot /. (573, 5\3m/3-1)
. .. . Loc min
is a local and absolute minimum, at x = %’r there is a local ab (312, 3\3m12)
. . .. 2t 12, \3m/2
maximum, at x = 2 there is a local minimum, and and at (w2 Ba)
. . o w2 = 3a2 2«
X = 2 there is a local and absolute maximum. The curve ©0.-2) o 2006
Abs min y=N3x—zcosx

is concave up on (0, 3) and (3, 2r), and is concave
T 3

downon(%,3). Atx = Z and x = 3 there are points

of inflection.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



26.

27.

28.

29.

30.

Wheny = ;—‘x — tanXx, theny’ = % — sec? x and

n__ 2 .. . o

y” = —2sec? x tan x. The curve is increasing on (—%, ),
: T ™ ToT _ _m

and decreasingon (—%,—Z) and (%,3). Atx = —7

there is a local minimum, at x = % there is a local
maximum,there are no absolute maxima or absolute minima.
The curve is concave up on (—g, O) , and is concave

down on (0, %) At x = 0 there is a point of inflection.

When y = sinx cosx, then y/ = —sin? x + cos® x = cos 2x
and y” = —2sin2x. The curve is increasing on (0, Z) and

(37, 7), and decreasing on (5, 3%). Atx = O thereisa
local minimum, at x = % there is a local and absolute

maximum, at X = %’T there is a local and absolute minimum,

and at X = 7 there is a local maximum. The curve is concave

™
)2
there is a point of inflection.

), and is concave up 0n(7—2r,7r). Atx =12

down on (O 3

When y = cosx + \/gsin X, theny’ = —sinx + \/gcosx
and y” = —cosx — 1/3sinx. The curve is increasing on
(0,2) and (F,27), and decreasing on (Z,%). At

x = 0 there is a local minimum, at x = % there is a local
and absolute maximum, at x = 47” there is a local and
absolute minimum, and at X = 27 there is a local maximum.

The curve is concave down on (0, 37) and (4, 27),

: St 1lrw __ 57 _ 1ln
and is concave up on (37, UT). Atx = 3 and x = 1}
there are points of inflection.

— 1/5 11 ,-4/5 /"o 4 —9/5
Wheny_x/,theny_gx /5 and y =— 35X /5,

The curve rises on (—oo, 00) and there are no extrema.
The curve is concave up on (—oo, 0) and concave down
on (0,00). Atx = 0 there is a point of inflection.

Wheny = x*° theny = 2x % andy” = — £ x75/°.
The curve is rising on (0, co) and falling on (—oo, 0). At
x = 0 there is a local and absolute minimum. There is
no local or absolute maximum. The curve is concave
down on (—o0, 0) and (0, c0). There are no points of
inflection, but a cusp exists at x = 0.

UPLOADED BY AHMAD JUNDI

Section 4.4 Concavity and Curve Sketching

Y Loc. max.

=

Loc. min.

y=sinxcosx
Abs max

(@4, 112)  paq Loc max

(12, 0) (m,0)
1 I re x
0,0) w4 /2 37w/4 T
Loc min
Bm/4,-1/12)
-l Abs min

y

o
(3, 2] Abs. max.

2+ y=cos,x+\/.?sinx
(2, 1) Loc. max.
1€0,1) [L” o] Infl.
Loc. min. \\ 6
1 I 1 1

X

T T 3w \27r
1+ 2 2
1 )1 l
oF ( R
(Air, —2] Abs. min.
3
y
2 y=xls
Vert tan
atx=0
1 I I 1 I 1 x
-3 2 -1 1 2 3
0,0
Infl
y=x25
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31.

32.

33.

34.

35.

Chapter 4 Applications of Derivatives

Wheny = ﬁ theny’ = W and

" =3x__ The curve is increasing on (—c0, c0).

y = 17

There are no local or absolute extrema. The curve is

concave up on (—oo, 0) and concave down on (0, c0).
At x = 0 there is a point of inflection.

Wheny = Y1~ theny = ——®+2 __ and
y 2x+1 7 y (2x~|»l)2\/17x2
Y T 2 . .

y/ = =147 The curve is decreasing on

T a-)7
(71, - %) and (f%, 1). There are no absolute extrrema,
there is a local maximum at x = —1 and a local minimum
at x = 1. The curve is concave up on (—1, —0.92) and
(—4,0.69), and concave down on (—0.92, —1) and
(0.69,1). At x = —0.92 and x = 0.69 there are points of
inflection.

When y = 2x — 3x*/3, theny’ = 2 — 2x~'/% and
"2 —4/3
y 3

(1, 00), and falling on (0, 1). There is a local maximum

. The curve is rising on (—oc, 0) and

at x = 0 and a local minimum at x = 1. The curve is
concave up on (—oo, 0) and (0, c0). There are no
points of inflection, but a cusp exists at x = 0.

Wheny = 5x%/% — 2x, theny’ = 2x%/° =2 =2 (x73/5 — 1)
andy” = — ¢ x~%/5. The curve is rising on (0, 1) and

falling on (—o0, 0) and (1, c0). There is a local minimum

at x = 0 and a local maximum at x = 1. The curve is
concave down on (—oo, 0) and (0, co). There are no

points of inflection, but a cusp exists at x = 0.

Wheny = x*3 (3 — x) = 3 x*% — x%/3, then

y = %x’1/3 - §x2/3 = %x’1/3(1 —x) and

y'=— gx_4/3 - %x‘lm =— gx_4/3(l + 2X).

The curve is rising on (0, 1) and falling on (—o0, 0) and

(1, 00). There is a local minimum at x = 0 and a local
maximum at x = 1. The curve is concave up on (—oco, — )
%, O) and (0, co0). There is a point

of inflection at x = — % andacuspatx =0.

and concave down on (—

UPLOADED BY AHMAD JUNDI

2 y=
X7+ 1
1
L1 1 1 [ x
4 -3 2 - 1 2 3 4
RO
—2 | Infl
y
'
'
|
i p V12
! ST 2+ 1
:
Loc. max. ! (0.69,0.30) Infl.

1,00

;
(-0.92,-0.48) i L(l' o
Il : 0C. min.

'
i
i
i
.
'
'

~

y=2x- 3523
Cusp, Loc max
© |0) L 1 A

X

-5

(1, 3) Loc. max.

Abs. min.

4 [
y= xz/s(% _ x)

3

Infl 2r

(c1r2,33%)

(1, 3/2) Loc max

1 1

X
2 \3

1
0,01
Cusp
Loc min
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36.

37.

38.

39.

When y = x*/3(x — 5) = x/3 — 5x%/3, then

y = %x2/3 — 13—0 x1/3 = %x’1/3(x —2)and

y' = % x84 %0 x4 = % x"43(x + 1). The curve
is rising on (—o00, 0) and (2, c0), and falling on (0, 2).
There is a local minimum at x = 2 and a local maximum
at x = 0. The curve is concave up on (—1,0) and (0, c0),
and concave down on (—oo, —1). There is a point of
inflection at x = —1 and a cusp at x = 0.

Wheny = xv/8 — x2 =x (8 — 2)1/2 then

v =8-x3)" +00(3) 8 —x) =2x)

— (8 —x2) V2 (8 _2x2) = 22 -2 +x) d
( x%) ( x*) = \/2\[+X 2ﬁ X)an

y' = (=1)(8 = x2) TH(=2x)(8 — 2x) + (8 — x%) *(—4x)
= % . The curve is rising on (—2, 2), and falling
8 —x?)

n (72\/5, 72) and (2,2\/5) . There are local minima

X = —2 and x = 24/2, and local maxima at x = 72\/5 and

x = 2. The curve is concave up on (—2\/5, 0) and

concave down on (0, 2\/5) . There is a point of inflection

atx = 0.

Wheny = (2 — x2)**, theny’ = (%)( x2) 2 (=2x)
= -3xv2-—xZ= \/ \/_—l—x) and
¥ =32 =) 4 (=30 (5) 2 - =2x)

= —OU=0UFY__  The curve is rising on

(V23) (V20
(—\/E, O) and falling on (O, \/5) . There is a local

maximum at X = 0, and local minima at x = =4 /2. The

curve is concave down on (—1, 1) and concave up on

(—\/5, —1) and (1, \/E) . There are points of inflection at

Xx= *1.

Wheny = /16 — x2, theny’ = \/;—X— and

y' = ﬁ . The curve is rising on (—4,0) and falling

on (0,4). There is a local and absolute maximum at x = 0
and local and absolute minima at x = —4 and x = 4. The
curve is concave down on (—4, 4). There are no points

of inflection.

UPLOADED BY AHMAD JUNDI
Section 4.4 Concavity and Curve Sketching 203

0,0
X
y=Bx_s)
1.-6) (2.0,-4.76)
y Loc max
2,4)
4 -
3 -
2 -
Loc max
(22,0) 'ff ©,0)Infl
1 1
= g
Loc min
e y=xV8-x2
4}
(-=2,-4
Loc min

2,0 2,0

(0,4) Abs max

(=4.0) (4.0
Abs min Abs min
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40. Wheny:XQ-i-%,theny/:zX_ 2 =202 gpq

x2 T x? y

y" =2+ & = 24 The curve is falling on (—oo, 0)

o 2
and (0, 1), and rising on (1, 00). There is a local minimum IO
at X = 1. There are no absolute maxima or absolute minima. 3t

The curve is concave up on (—oo, - \3/5) and (0, o), and Loc. min.

concave down on (—\3/5, 0) . There is a point of “2'",0)

inflection at x = —+/2.

—2)—(x2 -
41. Wheny = £=2, theny' = 20=2-0 =31

_ x=3x—1
= Tx-2p

" o__ (2x74)(x72)27(x274x+3)2(x72) _ 2 2
y = -2 = &-- =15

and

!
‘
i
! (3, 6) Loc min
i
i

The curve is rising on (—oo, 1) and (3, c0), and falling on I/,.\.u,z) boe max

: 1 1 1
(1,2) and (2, 3). There is a local maximum at x = 1 and a -8 -6 -4 S 24 68
local minimum at x = 3. The curve is concave down on 4F

(—00,2) and concave up on (2, o). There are no points

x

of inflection because x = 2 is not in the domain.

x2
—* —— and
3+ 13

X 1S 11 — — 3
(xzﬂ)”.Thecurvelsrlsngon( 00, —1), e

42. Wheny = v/x3 + 1, theny =
y// —
(—1,0), and (0, 00). There is are no local or absolute

. Infl.
extrema. The curve is concave up on (—oo, —1) and 1.0 ©, 1) Infl.
L X
(0, ), and concave down on (—1, 0) . There are points of 7 2

inflection at x = —1 and x = 0.

X —8(x>—4
43. Wheny = ngﬁ, theny' = <x£+4)2) and y

n_ l6x(x*—12)

e ia .The curve is fallng on (—oco, —2) N L2 o6
x“+4 r n
and (2, 00), and is rising on (—2,2). There is alocal and v

I T I S TN A T T I B |

absolute minimum at x = —2, and a local and absolute L 12

X

maximum at x = 2. The curve is concave down on (—2@}1—\5) il
. ) L

(—oo, —2\/§> and (O, 2\/3), and concave up on Abs min
(—2\/5, 0) and (2\/5, oo). There are points of inflection at x = —24/3,x =0, and x = 2\@.

y = 0 is a horizontal asymptote.

44. Wheny = >~ theny = =2 and

x4 452 (x*+5)? y
o 100x3(x* = 3) _— (0. 1) Abs. max.
= —————.The curve is risng on (—c0, 0), Tnfl. . 1) Abs. max.
(x*+5) ’
(-1,5/8) (1,5/8) Infl.

and is falling on (0, c0). There is alocal and

. . Y=
absolute maximum at X = 0, and there is no local or XS

aboslute minimum. The curve is concave up on =] 1 x

(—oo, —{‘@) and (\%, oo), and concave down on (—{‘/5, 0) and (O, {‘/5) There are points of inflection at x = —\‘/5

and x = \‘/§ . There is a horizontal asymptote of y = 0.
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46.

47.

48.

49.

UPLOADED BY AHMAD JUNDI
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21, x| 1 y
Wheny = [x2—1]={" " 7 , th
eny = |x | {l—xg, x| <1 en S
2%, x| > 1 2, x| >1 y=Ix2-1]
!/ __ > " __ ’
y_{Zx, |x|<1andy _{2, |x|<1'The 2

Loc max

curve rises on (—1,0) and (1, co) and falls on (—oco, —1) ©.1

and (0, 1). There is a local maximum at x = 0 and local

Lo 2
Loc min

minima at x = = 1. The curve is concave up on (—oo, —1) )
Locy min

and (1, o0), and concave down on (—1, 1). There are no
points of inflection because y is not differentiable atx = = 1 (so there is no tangent line at those points).

x2—2x, x<0
2x —x2, 0 <x <2 ,then
x? — 2%, X > 2

When y = [x? — 2x| =

)’=‘x2—2,\"

2x—2,x<0 2, x<0 (, 1) Loc. max,
y=¢2-2x,0<x<2,andy"=<¢ -2, 0<x<2. L VAR
X2, x>2 2, x>2 Abs_(?giﬁ?} A min

The curve is rising on (0, 1) and (2, 00), and falling on

(—00,0) and (1,2). There is a local maximum at x = 1 and local minima at x = 0 and x = 2. The curve is concave up
on (—o00,0) and (2, 00), and concave down on (0, 2). There are no points of inflection because y is not

differentiable at x = 0 and x = 2 (so there is no tangent at those points).

x,x 0
Wheny = /|x| = \/ , then
y X {\/X, x<0
1 -3/2
s x>0 = x>0 x
y, = 2_\1/7 and yN = 63/2 | .
m, x <0 %’ x<0
Since lim y' = —ocoand lim y = oo thereisa
Xx—0 x — 0F

cusp at x = 0. There is a local minimum at x = 0, but no local maximum. The curve is concave down on (—o0, 0)
and (0, co). There are no points of inflection.

vVx—4,x 4 y

Wheny = +/|x — 4| = , then
vV4—x, x<4
1 —(x —4)73/2

;L 2/)(_49)(>4' v %,X>4
y = —1 X <4 andy - —(4—x)"3/2 .

2a—x"’ — ., x<4
Since lim y' = —oocand lim y = oo there is a cusp

x — 4 X — 4%

at X = 4. There is a local minimum at x = 4, but no local
maximum. The curve is concave down on (—o0, 4) and (4, c0). There are no points of inflection.
Loc max

Y=2+x-xX=0+02-x),y =———| +++| ———
~1 2

= rising on (—1, 2), falling on (—o0, —1) and (2, c0)

= there is a local maximum at x = 2 and a local minimum

atx=—-Ly' =1-2x,y/ = +++| ———
1/2

= concave up on (—o0, 1), concave down on (4, 00) = a point of inflection at x =

X=—

1
2
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50. Y =x?—x—6=(x-3)(x+2),y =+++| ——— | +++
-2 3

= rising on (—oo, —2) and (3, 00), falling on (—2, 3)

= there is a local maximum at x = —2 and a local

minimum atx = 3;y" =2x — I,y" = ——— | +++
1/2

= concave up on (4,00), concave down on (—oo, 1)

= a point of inflection at x = %

51y =x(x—=3)%y = ——— | +++ | +++ = rising on
0 3
(0, 00), falling on (—00,0) = no local maximum, but there
is a local minimum at x = 0; y” = (x — 3)> + x(2)(x — 3) 20
=3x-3)x -1,y =+++| ———| +++ = concave
1 3

up on (—o0, 1) and (3, c©), concave down on (1,3) = points of inflection at x = 1 and x = 3

52. Y =x22—x),y = +++(|)+++£——— = rising on

(—00, 2), falling on (2,00) = there is a local maximum at
x = 2, but no local minimum; y” = 2x(2 — x) + x?(—1)

=x(4—-3x),y" = ———| +++| ——— = concave up
0 4/3

on (0, %), concave down on (—00,0) and (%,00) = points of inflection atx = 0 and x = %

53. y/ :X(XQ_ 12) :X(X—Z\/g) <X+2\/§) ) Lcj::;ax

’ .. Tnfl Inflx=2
y=—1| +4+++|—-—=| +++ = risingon Locmin/ y=_2 Loc min

—2/3 0 23 o3 =24
(72\/5, O) and (2\/§, oo) , falling on (foo, 72\/5)

and (0, 2\/5) = alocal maximum at x = 0, local minima at x = £2+/3:;y” = 1 (x? — 12) 4+ x(2x) = 3(x — 2)(x + 2),

y' =+4+++| ———| +++ = concave up on (—oco, —2) and (2, c0), concave down on (—2, 2) = points of inflection
— 2
atx = £2
54y =(x —1D*2x+3),y = —— |  +++|+++

FPARAS!
3, 00), falling on (—o0, — 2) = no local
maximum, a local minimum at x = — %;
V' =2x— DR2x+3)+(x— 1)?Q2) =2(x — DBx +2),
y'=4+++ | ———|+++ = concave up on

—-2/3 1 x=-3/2

(—00, — %) and (1, 00), concave down on (— %,1) = points of inflection at x = — 3 and x = 1

=> rising on (— 3
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56.

57.

58.

59.
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y = (8x — 5x%) (4 — x)? = x(8 — 5x)(4 — x)%, Loc max

x=8/5

y=———|+++| ———| ——— = risingon (0, %),
0 8/5 4

falling on (—o0, 0) and (£, 00) = alocal maximum at

X = % , a local minimum at x = 0;
y’' = (8 — 10x)(4 — x)* + (8x — 5x2) 2)4 —x)(—1) =44 — x) (5x2 — 16x + 8),

y' = +++ | ——— | +4++|——— = concaveupon | —oo, 8-21/6 and 8+—2\/6,4 , concave down on
8—2,/6 8+2,/6 4 : :
- +

5

(E;_'jﬂ, 8%2\%) and (4,00) = points of inflection at x = 8221/6 andx =4

y = (x2 = 2x) (x — 5)? = x(x — 2)(x — 5)%,
y =+++ | ———| +++ | +++ = rising on (o0, 0) and
0 2 5

(2,00), falling on (0,2) = alocal maximum at x = 0, a local
minimum at x = 2;
y' = (2x = 2)(x = 5)° +2(x? = 2x)(x — 5)
=2(x —5)(2x? —8x +5),
y'=—-—— | +++ | ———|+++ = concaveupon
4-/6 4+/6 5
2

2

207

(%, 4+ﬁ) and (5, 00), concave down on (—oo, %g) and (4“/6, 5) = points of inflection atx = % andx =5

2

y =sec’x,y'= ( +++) = risingon (— z g) ,

—m/2 /2
never falling = no local extrema; y” = 2(sec x)(sec x)(tan x) Infl
=2(sec’x) (tanx),y" = ( ———|+++) = concave x=0

—m/2 0 /2

up on (0, §), concave down on (—7%, 0), 0 is a point of
inflection.
y =tanx,y'= ( ———|+++) = risingon (0,5), .

—m/2 0 /2 . :
falling on (— %, 0) = no local maximum, a local minimum
atx = 0;y" =sec’x,y' = ( 4+++) = concave up rzl_z e x=:£

—m/2 /2 2 2
on (—%,2) = no points of inflection
y’:cotﬁ,y’:(+++ | ———) = rising on (0, ), O=m
O s 2’]‘(‘ Loc max

falling on (7, 27) = alocal maximum at # = 7, no local

minimum; y” = — Jesc? &,y = (———) = never
0

2
concave up, concave down on (0, 27) = no points of

inflection
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60. y' = csc? g,y’ = (+++) = rising on (0, 27), never
0 2m
falling = no local extrema;

y" =2 (ese 5) (ese §) (cot ) (3)
= —(csc? &) (cot &),y = (——— | +++)
s ) eon ).y = | )

= concave up on (, 2m), concave down on (0, )
= apoint of inflection at § = w

61. y =tan®f — 1 = (tan § — I)(tan 6 + 1),

y=( +++|] ———] +++) = risingon
—7/2  —m/4 /4 /2

(=%,—7)and (Z,%), fallingon (— 7, T)

452 47 4
= alocal maximum at § = — 7, a local minimum at 6 = 7;
y'=2tanfsec’0,y" = (  ——— | +++)
*71’/2 0 7r/2

= concave up on (O, g) , concave down on (f 5 0)

= apoint of inflection at § = 0

62. y =1—cot?0 = (1 — cot §)(1 + cot 0),
y=(-———] +++| ———) = risingon (%,3),
/4 3r/4 ™
falling on (0, %) and (%T", 7r) = alocal maximum at

0= ¥, a local minimum at § = 7 ;
y" = —2(cot ) (—csc? 0), y"' = (+4++| ———)
0 /2 T

= concave up on (0, 7), concave down on (5, 7)

= apoint of inflection at § = 7

63. y =costy =[+++| ——— | +++] = risingon
/2  3m/2 2m

(0,7) and (3F,27) , falling on (3,3) = local maxima at
t= % and t = 27, local minima att =0 and t = %”
y// — —sint,y” =[——— | 441

0 ™ 2T

= concave up on (m, 2m), concave down
on (0,7) = apoint of inflection att = 7

64. y' =sint,y' =[ +++| ———1 = rising on (0, 7),
0 T 2
falling on (m,27) = alocal maximum at t = 7, local
minima att = 0 and t = 27; y” = cos t,
y'=[+++| ——= | +++] = concaveupon (0,7)
0 /2 3m/2 2m

and (37”, 27r) , concave down on (g, 37

7) = points

of inflection at t = Z and t = 37
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2 Loc max
Loc max t=2m
t=0 t=m
Loc min Infl 3
_ 2T
=7
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y =&+ 17?3y = 4+++) (+++ = risingon
-1

(—o00, 00), never falling = no local extrema;

y'=—2x+ 1)y = ) (-

= concave up on (—oo, —1), concave down on (—1, co)

= apoint of inflection and vertical tangent at x = —1

y =x—-2713y = ———)(+++ = rising on (2, 00),
2

falling on (—o00,2) = no local maximum, but a local

minimum at x = 2; y" = — 1 (x — 2)7%/3,

y" = ———)(——— = concave down on (—c0,2) and

(2,00) = no points of inflection, but there is a cusp at
Xx=2

y =x3(x—-1),y = ———)(——— | +++ = rising on
0 1

Infl Infl

vert tan
x=0

(1, 00), falling on (—o0,1) = no local maximum, but a
local minimum at x = 1; y” = % x2/3 4 % x9/3
= IxTBx42),y = 4+ | —— =) (4

-2 0 x=1 .
= concave up on (—oo, —2) and (0, c0), concave down on Foemin
(—2,0) = points of inflection at x = —2 and x = 0, and a

vertical tangent at x = 0

Y =x x4 1),y = ——— | +H+) 4+ = risingon

(—1,0) and (0, 0), falling on (—oo, —1) = no local

maximum, but a local minimum at x = —1;
_1.-4/5 4 .,-9/5 _ 1_,-9/5

y'=3x / —3X / =X PB(x — 4),

y' =+4+++)(——— | +++ = concave up on (—oco, 0) and
0 4

(4, 00), concave down on (0,4) =- points of inflection at

x = 0 and x = 4, and a vertical tangent at x = 0

x=-1

o} xs0 "= 444 | +++ = risingon
y = 2x,x>0’y_ 0 1S1ng
Infl
-2, x<0
_ Lyl — » -
(—00,00) = no local extrema; y { 2. x>0 ° x=0
y" = ——=)(+++ = concave up on (0, c0), concave
0

down on (—o0,0) = a point of inflection at x = 0

f_[x.x<0 "= ——— | +++ = risingon
y = x2, x>0 Y= 0 s
(0, 00), falling on (—o00,0) = no local maximum, but a
-2x, x <0
.. N ’ =
local minimum at x = 0; y" = { 2%, x> 0° e

y" = +++4 | +++ = concave up on (—oo, 00)
0

= no point of inflection
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71. The graph of y = f”(x) = the graph of y = f(x) is concave Locmax &y y
up on (0, 00), concave down on (—oo,)) = a point of Infl y
inflection at x = 0; the graph of y = f'(x) P

Loc min

= y =+++|——— | +++ = the graph y = f(x) has
both a local maximum and a local minimum

72. The graphof y = f"(x) = y’ = +++ | ——— = the

y
graph of y = f(x) has a point of inflection, the graph of )
y=f'x)= y =———|+++| ——— = the graph of
y = f(x) has both a local maximum and a local minimum

73. The graphof y = f"(x) = y" = ——— | +++ | ——— X
= the graph of y = f(x) has two points of inflection, the P y
graphof y = f'(x) = y' = ——— | +++ = the graph of ’\‘%
y = f(x) has a local minimum LA

\\
\
/]

74. The graphof y = f"(x) = y' = +++ | —— = the ,
graph of y = f(x) has a point of inflection; the graph of
y=fx) =y =———|+++| ——— = the graph of

y = f(x) has both a local maximum and a local minimum

X
/ l
y

P

. x*-49 __ 1 _ 5
76. Yy = i = |

v

.
- K2 -49
L 2 e5x-14
|
:

(-7, 14/9) ! y=1

_______________ [ A
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y

x2—1

2
x2 -2

x2—4
x2 -2

82. y
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x2—x+1

85. y=1+=>—=x

+

—X
x—1 X —

2

2

87. y = X3 —3x24+3x—1 :X—4+ _5x+7 8. y = x3+x;2 _ _x_1+ 2

X —
xX2+x+2 X —X X —X

90. y= xz)((x_—IZ)
y
92, y= &

93. Point y' y”
P - +
Q + 0
R + -
S 0 —
T _ _
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94, , 95.

L 6,7)

96.

7K724012?\‘"

97. Graphs printed in color can shift during a press run, so your values may differ somewhat from those given here.

(a) The body is moving away from the origin when |displacement]| is increasing as t increases, 0 < t < 2 and
6 < t < 9.5; the body is moving toward the origin when |displacement]| is decreasing as t increases, 2 < t < 6
and 9.5 <t < 15

(b) The velocity will be zero when the slope of the tangent line for y = s(t) is horizontal. The velocity is zero
when t is approximately 2, 6, or 9.5 sec.

(c) The acceleration will be zero at those values of t where the curve y = s(t) has points of inflection. The
acceleration is zero when t is approximately 4, 7.5, or 12.5 sec.

(d) The acceleration is positive when the concavity is up, 4 < t < 7.5 and 12.5 < t < 15; the acceleration is
negative when the concavity is down, 0 <t < 4and 7.5 <t < 12.5

98. (a) The body is moving away from the origin when |displacement]| is increasing as t increases, 1.5 < t < 4,

10 < t < 12 and 13.5 < t < 16; the body is moving toward the origin when |displacement]| is decreasing as t
increases, 0 <t< 15,4<t<10and 12 <t < 13.5

(b) The velocity will be zero when the slope of the tangent line for y = s(t) is horizontal. The velocity is zero
when t is approximately 0, 4, 12 or 16 sec.

(c) The acceleration will be zero at those values of t where the curve y = s(t) has points of inflection. The
acceleration is zero when t is approximately 1.5, 6, 8, 10.5, or 13.5 sec.

(d) The acceleration is positive when the concavity isup, 0 <t < 1.5,6 <t < 8and 10 <t < 13.5, the
acceleration is negative when the concavity is down, 1.5 <t < 6,8 <t < 10and 13.5 <t < 16.

99. The marginal cost is g—i which changes from decreasing to increasing when its derivative % is zero. This is a

point of inflection of the cost curve and occurs when the production level x is approximately 60 thousand units.

. . d e . . . . . a2y . .. .
100. The marginal revenue is d—i and it is increasing when its derivative d—xﬁ is positive = the curve is concave up

. . . 2 .
= 0 <t<2and5 <t < 9; marginal revenue is decreasing when 37% < 0 = the curve is concave down
= 2<t<S5and9 <t < 12.

101. Wheny' = (x — 1)%(x — 2), then y"" = 2(x — 1)(x — 2) + (x — 1)2. The curve falls on (—o0, 2) and rises on

(2,00). Atx = 2 there is a local minimum. There is no local maximum. The curve is concave upward on (—oo, 1) and
(3,00) , and concave downward on (1,3). Atx = 1 orx = 3 there are inflection points.
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102. Wheny' = (x — 1)2(x — 2)(x — 4), then y” = 2(x — I)(x — 2)(x —4) + (x — D)’(x —4) + (x — )*(x — 2)
=(x—1[2(x*—6x+8)+ (x> =5x +4) + (x> = 3x +2)] = 2(x — 1) (2x* — 10x + 11). The curve rises on
(—00,2) and (4, c0) and falls on (2,4). Atx = 2 there is a local maximum and at X = 4 a local minimum. The

. —/3 —
curve is concave downward on (—oo, 1) and (ST‘[, > +2\/§> and concave upward on (1, > 2\/5) and

(#, oo) CAtx =1, # and S%ﬁ there are inflection points.

103. The graph must be concave down for x > 0 because y
f'(x) = — & <0.

104. The second derivative, being continuous and never zero, cannot change sign. Therefore the graph will always
be concave up or concave down so it will have no inflection points and no cusps or corners.

105. The curve will have a point of inflection at x = 1 if 1 is a solution of y” = 0; y = x> + bx? + cx +d
v =3x24+2bx4c = v —6x+2band6(1)+2b=0 = b— —3.
106. (a) f(x):ax2+bx+0:a(x2+§x)+c:a(x2+2x+%) —%—l—c:a(x—f—%)Q—%aparabola

whose vertex is at x = — % = the coordinates of the vertex are (

T 2a) 4a

b b2—4ac>

(b) The second derivative, f”(x) = 2a, describes concavity = when a > 0 the parabola is concave up and
when a < 0 the parabola is concave down.

107. A quadratic curve never has an inflection point. If y = ax? + bx + ¢ where a # 0, then y’ = 2ax + b and
y"” = 2a. Since 2a is a constant, it is not possible for y” to change signs.

108. A cubic curve always has exactly one inflection point. If y = ax® + bx? + cx + d where a # 0, then
y' = 3ax? + 2bx + c and y” = 6ax + 2b. Since g—: is a solution of y” = 0, we have that y” changes its sign
atx = — 3% and y’ exists everywhere (so there is a tangent at x = — %). Thus the curve has an inflection

point at x = — 33 . There are no other inflection points because y” changes sign only at this zero.
a

109. y"=(x+1)(x—2),wheny” =0=x=—-lorx=2;y" = +4++ | ———| +++ = points of inflection at x = —1
-1 2
and x =2

110. y”" =x(x —2)*(x +3),wheny” =0=x= -3, x =0,0rx =2;y" = +4+ | ———| ———| +-++ = points of
-3 0 2

inflectionat x = —3 andx =2

111. y=ax’*+bx>+cx =y’ =3ax>+2bx+candy” = 6ax + 2b; local maximum at x = 3
= 3a(3)* 4 2b(3) + ¢ = 0 = 27a+ 6b + ¢ = 0; local mimimum at x = —1 = 3a (—1)* +2b(—1) + ¢ =0
= 3a— 2b + ¢ = 0; point of inflection at (1, 11) = a(1)* + b(1)*+¢(1) =11 = a+b+c = 11 and
6a(1) +2b =0 = 6a+2b=0. Solving27a+6b+c=0,3a—2b+c=0,a+b+c=11,and6a+2b=0
:>a:—l,b:3,andc:9:>y:—X3+3x2+9x
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_ x*+a _ bx*+2cx—ab. b(3)° +2c¢(3) —ab __ _ —_ 0 E
12, y =76 = y' = = ot local maximum atx = 3 = 4( O 0 = 9b 4 6¢c — ab = 0; local minimum at
(—1,—2):>W—0:>b 2c —ab=0and {7 = —2 = —a+2b— 2c = 1. Solving

9b+6c—ab:0,b—2c—ab:0,and—a+2b—2c:léa:?),b:l,andc:—léy:%.

113. Ify = x® — 5x* — 240, then y’ = 5x3(x — 4) and 2
y” = 20x%(x — 3). The zeros of y’ are extrema, and 200
there is a point of inflection at x = 3.

\

200 y'=5x3(x—4)

-400
y=x>-5x*-240

114. Ify = x3 — 12x2, then y’ = 3x(x — 8) and \
" / " . ‘Y":i(}_:_ﬂf
y" = 6(x — 4). The zeros of y' and y” are ';5— - >
extrema and points of inflection, respectively. =50, ¥ = 3x(x-8)
~100
-150
-200 y=x 12
-250
115. Ify = £x° + 16x> — 25, then y’ = 4x (x> 4 8) and 3 +8) )
y”" =16 (x® + 2). The zeros of y’ and y” are 100;/
extrema and points of inflection, respectively. /50-'
EY AV
/ —50F y=3x"+16+7-25
,100 -
y'=16(3+2)
116. Ify =% — £ _ 4x2 4 12x + 20, then Y z@xeax-2 ]
173 £ 8,2
y =x*—x? = 8x+ 12 = (x + 3)(x — 2)°. o BRI
295
So y has a local minimum at x = —3 as its only extreme — = <
value. Alsoy” = 3x? — 2x — 8 = (3x + 4)(x — 2) and there -2 : ’
are inflection points at both zeros, —% and 2, of y”. =50
-75]

Y = (x<2)(x+3)(x-2) -100

117. The graph of f falls where f’ < 0, rises where f’ > 0,

and has horizontal tangents where f” = 0. It has local X

minima at points where f’ changes from negative to 101

positive and local maxima where f’ changes from 51 f (%) =2x" —4x" +1
positive to negative. The graph of f is concave down R

where f” < 0 and concave up where f” > 0. It has an -2 1 1 2
inflection point each time f”changes sign, provided a £o(x) =82 —8x 51 fon(e) = 24278

tangent line exists there.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI
216  Chapter 4 Applications of Derivatives
118. The graph f is concave down where f” < 0, and concave ;

up where f” > 0. It has an inflection point each time
f” changes sign, provided a tangent line exists there.

4.5 APPLIED OPTIMIZATION

1. Let £ and w represent the length and width of the rectangle, respectively. With an area of 16 in.?, we have

that (£)(w) = 16 = w = 16(~" = the perimeter is P = 20 + 2w = 20 + 32("' and P/(() = 2 — 2 = 2(£216)
Solving P'(¢) =0 = W =0 = (= —4,4. Since ¢ > 0 for the length of a rectangle, ¢ must be 4 and

w =4 = the perimeter is 16 in., a minimum since P"({) = ¢ > 0.

2. Let x represent the length of the rectangle in meters (0 < x < 4) Then the width is 4 — x and the area is
A(x) = x(4 — x) = 4x — x2. Since A’(x) = 4 — 2x, the critical point occurs at x = 2. Since, A’(x) > 0 for 0 < x < 2 and
A’(x) < 0 for 2 < x < 4, this critical point corresponds to the maximum area. The rectangle with the largest area measures
2mby4 — 2 = 2m, soitis a square.

Graphical Support:
A(x)

BN W

-1+

3. (a) The line containing point P also contains the points (0, 1) and (1,0) = the line containing Pisy = 1 — x
= a general point on that line is (x, 1 — x).
(b) The area A(x) = 2x(1 — x), where 0 < x < 1.
(c) When A(x) =2x —2x%, then A/(x) =0 = 2 —4x=0 = x = % . Since A(0) = 0 and A(1) = 0, we conclude

that A (1) = 3 sq units is the largest area. The dimensions are 1 unit by § unit.

4. The area of the rectangle is A = 2xy = 2x (12 — x?), Y
where 0 < x < /12. Solving A’(x) =0 = 24 —6x> =0
= x = —2 or 2. Now —2 is not in the domain, and since

A(0) = 0 and A (\/ 12) — 0, we conclude that A(2) = 32 d .

square units is the maximum area. The dimensions are 4 units
by 8 units.

5. The volume of the box is V(x) = x(15 — 2x)(8 — 2x) 15-2x
= 120x — 46x> 4 4x3, where 0 < x < 4. Solving V/(x) = 0 _________l_
= 120—-92x + 12x> =46 —x)(5-3x) =0 = x =3 ! :
or 6, but 6 is not in the domain. Since V(0) = V(4) =0, ; :

A\ (%) = %?0 ~ 91 in® must be the maximum volume of ‘

the box with dimensions 13—4 X ? X % inches.

8-2x
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The area of the triangle is A = % ba = g 1/ 400 — b2, where y
A _ 1./ 12 b 0,b)

0 <b < 20. Then g 5 V400 — b 20 ( \

20

= \;% =0 = the interior critical pointis b = 10\/5.

When b = 0 or 20, the area is zero = A (10\/5) is the

(a,0)

maximum area. When a2 + b2 = 400 and b = 101/2, the

value of a is also 10\/5 = the maximum area occurs when
a=h.

The area is A(x) = x(800 — 2x), where 0 < x < 400. thver

Solving A'(x) = 800 —4x = 0 = x = 200. With x x
A(0) = A(400) = 0, the maximum area is
A(200) = 80,000 m2. The dimensions are 200 m by 400 m. L

The area is 2xy = 216 = y = 12—8 . The amount of fence X =
neededis P = 4x + 3y =4x + 324x71, where 0 < x; y y
g—f: =4 - % =0 = x> —81=0= the critical points are
0 and £ 9, but 0 and —9 are not in the domain. Then X X
P’(9) > 0 = atx = 9 there is a minimum = the

dimensions of the outer rectangle are 18 mby 12 m

= 72 meters of fence will be needed.

(a) We minimize the weight = tS where S is the surface area, and t is the thickness of the steel walls of the tank. The
surface area is S = x? + 4xy where x is the length of a side of the square base of the tank, and y is its depth. The

volume of the tank must be 500ft® = y = %. Therefore, the weight of the tank is w(x) = t(x2 + 20%). Treating the

thickness as a constant gives w'(x) = t(2x — 23%) . The critical value is at x = 10. Since w”(10) = t(2 + %) > 0,
there is a minimum at x = 10. Therefore, the optimum dimensions of the tank are 10 ft on the base edges and 5 ft
deep.

(b) Minimizing the surface area of the tank minimizes its weight for a given wall thickness. The thickness of the steel

walls would likely be determined by other considerations such as structural requirements.

. (a) The volume of the tank being 1125 ft?, we have that yx> = 1125 = y = 1}% The cost of building the tank is
c(x) = 5x? + 30x(1122), where 0 < x. Then ¢/(x) = 10x — #70 = 0 = the critical points are 0 and 15, but 0 is not

x2 x2

in the domain. Thus, ¢”(15) > 0 = at x = 15 we have a minimum. The values of x = 15 ft and y = 5 ft will
minimize the cost.

(b) The cost function ¢ = 5()(2 + 4xy) + 10xy, can be separated into two items: (1) the cost of the materials and labor to
fabricate the tank, and (2) the cost for the excavation. Since the area of the sides and bottom of the tanks is (x2 + 4xy),
it can be deduced that the unit cost to fabricate the tanks is $5/ft2. N ormally, excavation costs are per unit volume of

excavated material. Consequently, the total excavation cost can be taken as 10xy = (%) (x?y). This suggests that the

2
unit cost of excavation is 22™ where x is the length of a side of the square base of the tank in feet. For the least

X
. . .. 810/
expensive tank, the unit cost for the excavation is $1 5/ = $%§7 = %

$3375, which is the sum of $2625 for fabrication and $750 for the excavation.

. The total cost of the least expensive tank is

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



218

12.

14.

15.

16.

. The area of the printing is (y —4)(x — 8) = 50.
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Consequently, y = ( ) + 4. The area of the paper is
A(x) = x (2% +4), where 8 < x. Then ©

/50 50 4(x —8)* — 400 x
A = (T5 +4) —x ((x—8>2) = s 0

= the critical points are —2 and 18, but —2 is not in the

domain. Thus A”(18) > 0 = at x = 18 we have a minimum
Therefore the dimensions 18 by 9 inches minimize the
amount minimize the amount of paper.

The volume of the cone is V = 7Tr2h wherer = x = \/W and h = y + 3 (from the figure in the text). Thus,
V) =50-y)y+3) = 5(27+9y73y —y*) = V/(y) = 5 (9 — 6y — 3y*) = 7(1 — y)(3 + y). The critical
points are —3 and 1, but —3 is not in the domain. Thus V(1) = § (=6 — 6(1)) < 0 = aty = 1 we have a maximum
volume of V(1) = Z (8)(4) = zzﬂ cubic units.

= —®f — A”(Z) <0, there is a maximumat 6 = 7 .

. The area of the triangle is A(f) = M ,where 0 < 6 < . «
Solving A'(f) =0 = 226 —0 = ¢ = 2. Since A"()) 5
b

A volume V = 7ir*h = 1000 = h = —r The amount of
material is the surface area given by the sides and bottom of

thecan = S = 27th+ 7r? = 2% 4 72, 0 < r. Then

& — 200 4 orr=0 = ™ ‘r'OOO = 0. The critical points

are 0 and \1} but O is not in the domain. Since

2
Cérz = 4000 + 27 > 0, we have a minimum surface area when

r= ?\,10[ cmand h = 1990 — \1} cm. Comparing this result to

the result found in Example 2, if we include both ends of the
can, then we have a minimum surface area when the can is
shorter-specifically, when the height of the can is the same as
its diameter.

With a volume of 1000 cm and V = 7r?h, then h = M . The amount of aluminum used per can is

A = 8% + 2mth = 8r% + 220 | Then A'(r) = 16r — 2000 =0 = w =0 = the critical points are 0 and 5,
but r = 0 results in no can. Since A”(r) = 16 + 1000 > 0 we have a minimumatr =5 = h= and hr = 8:7.
15 2%

in., so the volume formula is V(x) = w = 2x3 — 25x2 + T5x.

(b) We require x > 0, 2x < 10, and 2x < 15. Combining these requirements, the domain is the interval (0, 5).

(a) The base measures 10 — 2x in. by

1%

80|
(1.9618739, 66.019118)
60 -
40

20
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(c) The maximum volume is approximately 66.02 in.> when x ~ 1.96 in.

(d) V'(x) = 6x> — 50x + 75. The critical point occurs when V/(x) = 0, at x = 0E (752(?6;74(6)(75) =% il‘Q/m

= %iTs\ﬁ, that is, x ~ 1.96 or x =~ 6.37. We discard the larger value because it is not in the domain. Since

V”(x) = 12x — 50, which is negative when x ~ 1.96 , the critical point corresponds to the maximum volume. The

25— 51/7
6

maximum volume occurs when x = =~ 1.96, which comfimrs the result in (c).

(a) The "sides" of the suitcase will measure 24 — 2x in. by 18 — 2x in. and will be 2x in. apart, so the volume formula is
V(x) = 2x(24 — 2x)(18 — 2x) = 8x® — 168x> + 862x.
(b) We require x > 0, 2x < 18, and 2x < 12. Combining these requirements, the domain is the interval (0, 9).

v
Maximum
1400 F X =3.3944487 Y = 1309.9547

1200
1000
800
600
400
200

/

1 1 I 1
2 4 6 8

(c) The maximum volume is approximately 1309.95 in.3 when x ~ 3.39 in.

14+4/(-14)° - 4(1)(36) 14+ ,/52

2(1) 2

(d) V/(x) = 24x? — 336x + 864 = 24(x? — 14x + 36). The critical point is at x =
=7+ \/ﬁ, that is, x ~ 3.39 or x ~ 10.61. We discard the larger value because it is not in the domain. Since
V”(x) = 24(2x — 14) which is negative when x =~ 3.39, the critical point corresponds to the maximum volume. The
maximum value occurs at X = 7 — \/E ~ 3.39, which confirms the results in (c).

(e) 8x3 —168x2 + 862x = 1120 = 8(x® — 21x% + 108x — 140) = 0 = 8(x — 2)(x — 5)(x — 14) = 0. Since 14 is not in
the fomain, the possible values of x are x = 2 in. or x = 5 in.

(f) The dimensions of the resulting box are 2x in., (24 — 2x) in., and (18 — 2x). Each of these measurements must be
positive, so that gives the domain of (0, 9).

If the upper right vertex of the rectangle is located at (x, 4 cos 0.5 x) for 0 < x < , then the rectangle has width 2x and
height 4 cos 0.5x, so the area is A(x) = 8x cos 0.5x. Solving A’(x) = 0 graphically for 0 < x < 7, we find that

x ~ 2.214. Evaluating 2x and 4 cos 0.5x for x ~ 2.214, the dimensions of the rectangle are approximately 4.43 (width) by
1.79 (height), and the maximum area is approximately 7.923.

Let the radius of the cylinder be r cm, 0 < r < 10. Then the height is 21/ 100 — r? and the volume is
V(r) = 2m12y/100 — 2 cm®. Then, V/(r) = 2m2(¢ﬁ) (—2r) + (27“/100 - r2> (2r)

_ 3 _ 2 —_ 2 .. . .
= 2m +4ﬂ(10.0 ) — 2200 3; ) The critical point for 0 < r < 10 occurs atr = 200 — 10\/5. Since V/(r) > 0 for
V100 — 12 V100 — 1 3 3

0<r< 10\/2 and V'(r) < 0 for 10\/2 < r < 10, the critical point corresponds to the maximum volume. The

dimensions are r = 10\/2 ~ 8.16 cmand h = % ~ 11.55 cm, and the volume is % ~ 2418.40 cm®.
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20. (a) From the diagram we have 4x + £ = 108 and V = x?/.
The volume of the box is V(x) = x2(108 — 4x), where
0 < x < 27.Then
V/(x) =216x — 12x2 = 12x(18 = x) =0
= the critical points are 0 and 18, but x = 0 results in
no box. Since V/(x) =216 —24x < 0 atx = 18 we
have a maximum. The dimensions of the box are
18 x 18 x 36 in.

N

(b) In terms of length, V(£) = x?{ = (%ﬂ) {. The graph
indicates that the maximum volume occurs near ¢ = 36,
which is consistent with the result of part (a).

21. (a) From the diagram we have 3h 4+ 2w = 108 and
V =h’w = V(h) =h? (54 — 3h) = 54h> — 3 h’.
Then V/'(h) = 108h — 2h? = 2h(24 —h) =0
= h = 0orh =24, but h = 0 results in nobox. Since
V”(h) = 108 — 9h < 0 at h = 24, we have a maximum

(b)
v (24, 10368)
Abs max

10000
8000
6000
4000
2000

1 1 1 1 1 1 1
5 10 15 20 25 30 35

22. From the diagram the perimeter is P = 2r + 2h + 7,
where r is the radius of the semicircle and h is the
height of the rectangle. The amount of light transmitted
proportional to
A =2rh+ {7’ = r(P — 2r — 7r) + fnr?

=1P—2r> — %ﬂrZ.Then%—? =P—4r— %’/TI":O
~r— 22 . op_p_ 4P 2rP _ (4+mP

8+3m 8§+3r  8+3w 8+3m °

Therefore, % = H% gives the proportions that admit the

: . A _ 3
most light since iz = —4 — 57 <0.

UPLOADED BY AHMAD JUNDI

10000
8000
6000
4000
2000

23. The fixed volume is V = 7r*h + % = h= Y% — % , where h is the height of the cylinder and r is the radius

mr2

of the hemisphere. To minimize the cost we must minimize surface area of the cylinder added to twice the

surface area of the hemisphere. Thus, we minimize C = 2zrh + 4712 = 2nr ( vo_ %) +4nr? = % + % 2,

dc _ 2V 4 16 . — 8.3 — (3V\1/3
Then & = —H +2mr=0= v=3{m® =>r=(3))
ALK 2.318.v1/3  318.0.4.y1/3 _0313.y1/3 13y 1/3 .

— 7133273 T T3.9.4/3 3.9.71/3 = (7) . Since

dimensions do minimize the cost.

2
\ 2r

. From the volume equation, h = =5 — 5

mr2 3

4r—3v+¥7r>0,these
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The volume of the trough is maximized when the area of the cross section is maximized. From the diagram

the area of the cross section is A(f) = cos 6 + sin 6 cos 0,0 < 6 < 5. Then A'(6) = —sin 6 + cos? 6 — sin® 4
—(2sin?0 +sinf —1) = —(2sin @ — 1)(sinf + 1) so A'(§) =0 = sinf = % orsinf = —1 = ¢ = ¢ because

sinf) # —1when 0 < 6 < 7. Also, A'(9) > 0for0 <6 < g and A'(#) < Ofor § < 6 < 7. Therefore, at f = ¢

there is a maximum.

(a) From the diagram we have: AP = x, RA = /L — x2, e e
PB=85—-x,CH=DR =11 -RA=11—+/L—x2,
QB —(85—-x)2,HQ=11-CH-QB
— 11— [11 VL + x2—(8.5—x)2]
=VL-x2—/x2—(85-x?2 RQ =RH +HQ
2
= (8.5 + (\/L X /X (85— x)?) It
9 9 2
follows that RP” = PQ° + RQ® = L2 = x2 4+ (\/LZ X/ —(x= 8.5)2) 1 (8.5)2
= L2=x>+L2—-x2—2vVL2—x2/17x — (8.5)2 + 17x — (8 5)% + (8.5)?
2 X3 X
= 17 =42 = x*) (I17x - (8.5)7) = L2 =x"+ 4[17x7 @57 = TG = 17x1_7(¥)
43 _ 2x3
= &x-17 — 2x785
(b) Iff(x) = 4x - is minimized, then L? is minimized. Now f'(x) = % = f/(x) < 0 whenx < %
and f'(x) > 0 when x > ? . Thus L? is minimized when x = %.
(c) Whenx = 3], thenL ~ 11.0in. L
3
3
25
2
1
VW73 5 10 X
(a) From the figure in the text we have P = 2x 42y = y = g —x. If P =36, then y = 18 — x. When the

cylinder is formed, x = 27t = 1= 5-andh =y = h = 18 — x. The volume of the cylinder is V = nr’h
= V() = '8"—_" Solving V/(x) = M =0 = x = 0or 12; but when x = 0, there is no cylinder.
Then V"(x) = 2 ( —3) = V’(12) <0 = there is a maximum at x = 12. The values of x = 12 cm and
y = 6 cm give the largest volume.

(b) In this case V(x) = mx%(18 — x). Solving V'(x) = 37x(12 —x) =0 = x = 0 or 12; but x = 0 would result in
no cylinder. Then V'(x) = 6m(6 —x) = V”(12) <0 = there is a maximum at x = 12. The values of
x = 12 cm and y = 6 cm give the largest volume.

Note that h? 4+ r? = 3 and sor = \/3 — h%. Then the volume is given by V = Zr*h = Z(3 — h?)h = 7h — Zh? for
0 <h < /3,and so &V = 7 — r? = m(1 — 1?). The critical point (for h > 0) occurs ath = 1. Since & > 0 for
0<h<«<l, and < Oforl <h< \/5 the critical point corresponds to the maximum volume. The cone of greatest

volume has radlus \/_ 2 m, height 1m, and volume 2 5 m3.

Letd = \/(X—O)2+ (y—0)* =+/x2+y2and X+ ¥ =1=y=—2x+b. We can minimize d by minimizing
D= (\/x2—|—y2)2 = x>+ (—bx—I—b) =D’ =2x+2(~2x+b)(-) =2x+ Bx -2 p' =0

:>2<x—|— ,x—;) =0=x= ﬁb I~ 1sthecr1tlcalpomt:>y——Z<a2+b2) +b= a2+b2
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D" =2+2% S = D/ ( ) =2+ za—b; > 0 = the critical point is local minimum = (#bzbz, azajr—bbz) is the point on the

a2 +b?

line § + % = 1 that is closest to the origin.

— L=l x) =021 =0=x2 - 1=0=x= % 1.Since x >0,

29. LetS(x) =x+ 1, x>0=8"(x)=1- %
. = S”(1) = % > 0 = local minimum when x = 1

we only consider x = 1. $”(x) =

30. Let S(x)

=l a x> 0= S (x) = — L+ 8x =871 S (x)=0= ¥ =083 — 1=0=x=1
S"(x) = 3 +8=5"(}) =

2
a 22>3 + 8 > 0 = local minimum when x = %

31. The length of the wire b = perimeter of the triangle 4 circumference of the circle. Let x = length of a side of the
equilateral triangle = P = 3x, and let r = radius of the circle = C = 27r. Thusb =3x+2nrr=r= M. The area of

the circle is 7 r* and the area of an equilateral triangle whose sides are x is 1 5(X) ( \{x) ‘[ x2. Thus, the total area is

glvenbyA \/—x2+7rr—\/_2 (b 3x) \/_2_|_ (b— zx) :>A'—‘/—x——(b—3x) L— _my 9y

2m
_ \/_ by 9, _ _3b \/—
=0= 5x— 3+ 27Tx 0=x= Jirto A + — > 0 = local minimum at the critical point.
P=3 ( \/33:”) = \/59:+9 m is the length of the trianglular segment and C = 2 (252*) = b — 3x
—b 9  _ \/3mb

~ Jirgs = Virss M is the length of the circular segment.

32. The length of the wire b = perimeter of the square + circunference of the circle. Let x = length of a side of the square
= P = 4x, and let r = radius of the circle = C = 27r. Thusb =4x +2nrr=r = %. The area of the circle is

712 and the area of a square whose sides are x is x. Thus, the total area is given by A = x?> + 712

:x2+7r(b;;4")2 2+“’ A =2k — A(b—dx) =2x— 24 B A =0=2x— 24 3x=0

=X = 4+,. A'=2 —|— > 0 = local minimum at the critical point. P = 4(4+ﬂ) = % m is the length of the square
segment and C = 2 7r(b 5 4") =b—4x=Db-— 4+W = 4b+” m is the length of the circular segment.

33. Let(x,y) = (x, %x) be the coordinates of the corner that intersects the line. Then base = 3 — x and height =y = %X, thus
the area of therectangle is given by A = (3 — x)(§x) =4x — $x,0<x <3 A’ =4 - 3x, A/ =0=>x=3.A" = -}
= A”(3) < 0 = local maximum at the critical point. The base = 3 — 3 = 3 and the height = 3(3) = 2.

34. Let (x,y) = (x, V9 — x2) be the coordinates of the corner that intersects the semicircle. Then base = 2x and height =y

= /9 — x2, thus the area of the inscribed rectangle is given by A = (2x)v/9 — x2,0 < x < 3. Then
r_ ) _200-x7) -2 LEETSN _ 3\/_ _ \/_
A =29 —x +(2X)\/9 = e T e A =0=18-4x>=0=x= £ ¥, onlyx = lies in

0 < x < 3. A is continuous on the closed interval 0 g X < 3 = A has an absolute maxima and absolute minima.

A(0) =0,A(3) =0, and A(#) = (3\/5) (%) = 9 = absolute maxima. Base of rectangle is 31/2 and height

35. (@) f(x) =x?+2 = f'(x) =x%(2x* —a), so that f'(x) = 0 when x = 2 implies a = 16
b fx)=x*+2 = f"x)= 2x73 (x3 + a), so that f”(x) = O when x = 1 impliesa = —1
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If f(x) = x> + ax® + bx, then f'(x) = 3x2 + 2ax + b and f”(x) = 6x + 2a.

(a) A local maximum at x = —1 and local minimumatx =3 = {'(—1)=0andf'3) =0 = 3 —-2a+b=0and
274+ 6a+b=0 = a=—-3andb = —9.

(b) A local minimum at x = 4 and a point of inflectionatx =1 = f'(4) =0andf"(1) =0 = 48+8a+b=0
and6+2a=0 = a=—3andb = —24.

(a) s(t) = =16t + 96t + 112 = v(t) =

s'(t) = =32t + 96. At t = 0, the velocity is v(0) = 96 ft/sec.
(b) The maximum height ocurs when v(t) =

0, when t = 3. The maximum height is s(3) = 256 ft and it occurs att = 3
sec.

(c) Note that s(t) = —16t2 + 96t + 112 = —16(t + 1)(t — 7), sos = 0 at t = —1 or t = 7. Choosing the positive value
of t, the velocity when s = 0is v(7) = —128 ft/sec.

b 6 mi !
—x—t 6~x 1 Village
[P/
2]’_" :J\/4+x2miles

Jane
Let x be the distance from the point on the shoreline nearest Jane's boat to the point where she lands her boat. Then she

needs to row v/4 + x2 mi at 2 mph and walk 6 — x mi at 5 mph. The total amount of time to reach the village is

f(x) = _\/4;"’ + %2% hours (0 < x < 6). Then '(x) = %ﬁ@x) -1i= Qm — 1. Solving f'(x) = 0, we

have: 2\/éf+7x2 =1=6x=2/44+x2=25x =4(4 +x%) = 2Ix* =16 => x = + ﬁ. We discard the negative

value of x because it is not in the domain. Checking the endpoints and critical point, we have f(0) = 2.2,

f <\/%) ~ 2.12, and f(6) ~ 3.16. Jane should land her boat \/% ~ 0.87 miles down the shoreline from the point

nearest her boat.

§:H27:sh_8+216andL() h? + (x + 27)

- \/ 8+ 28)" 4 (x +27)° whenx 0. Note that L(x) is L X
minimized when f(x) = (8 + %)2 + (x4 27)%is

minimized. If f'(x) = 0, then 8

28+ 20)(—20) +2(x+27) =0 n T

= (x +27)(1 — 13%) = 0 = x = —27 (not acceptable
since distance is never negative or x = 12. ThenL(12) = /2197 =~ 46.87 ft.

(a) s ZSQ:>sint=sin(t+§) = sint=sintcos 2 3 +sm—cost:>smt— —s1nt+ ‘/—cost:>tant— \/5

=t=3Jor 4%”
(b) The distance between the particles is s(t) = [s; — so| = [sint —sin (t + )

(sin t— \/3 cos t) (cos t++/3sin t)

2 ‘sint— \/gcos t‘

—

=3 ‘sint—\/gcost‘

St 4r  llx 27

/ _ LI
:>S(t)— v 3262 37 6 ° B

since d x| = | = critical times and endpoints are 0, 5

then s(0) = ? ,S (g) =0,s (%’r) =1,s (%”) =0,s (“T“) =1,sQ2n) = ? = the greatest distance between the

particles is 1.

(sin t—+/3 cos t) (cos t+1/3 sin 1)
2 ‘sint—\/gcos t‘

between the particles is changing the fastest near these points.

(c) Since s'(t) = we can conclude that at t = % and %”, s'(t) has cusps and the distance
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41. I= %, let x = distance the point is from the stronger light source = 6 — x = distance the point is from the other light

source. The intensity of illumination at the point from the stronger light is I} = % and intensity of illumination at the

point from the weaker lightis I, = (6572)02. Since the intensity of the first light is eight times the intensity of the second
light = k; = 8k». = I} = % The total intensity is givenby = I; + I, = % 4 (652X)2 =1 =-1%4 %

= SOt 2% g 1= g o SO 2 g o 6(6 - x) Pk + 2%k = 0= x = 4m. 17 = B |6k

X3 (6—x)° X3 (6-x)° x* (6—x)*

=1"(4) = 448% 4+ —%2 0 = local minimum. The point should be 4 m from the stronger light source.

42. R =

(-4
Bsin2a = ® = 2cos20 and ® = 0 = 2Beos20 =0 = a = 2. C& = _Mignoy = ER|  — _Bgipo(x)
2 sin2a = o = tcos2cvand G = 2 Cos 20 = a={ G = " gsin2a= G| = —sin2(g
4
4?2 . . . . ..
= —% < 0 = local maximum. Thus, the firing angle of a = 7 = 45° will maximize the range R.

43. (a)

(b)

44. (a)

(b)

45. (a)

(b)

From the diagram we have d*> = 4r> — w2, The strength of the beam is S = kwd? = kw (4r> — w?). When
r = 6, then S = 144kw — kw3, Also, S'(w) = 144k — 3kw? =3k (48 —w?)so S’ (W) =0 = w= + 4\/5;
N (4\/5) < 0Oand —4\/§ is not acceptable. Therefore S (4\/5) is the maximum strength. The dimensions

of the strongest beam are 4\/5 by 4\/8 inches.

(©)
600 600
500 500
400 400
o s=14dw—w? o
200) 200
100} 100

T4 6 & 10 12
Both graphs indicate the same maximum value and are consistent with each other. Changing k does not
change the dimensions that give the strongest beam (i.e., do not change the values of w and d that produce
the strongest beam).

From the situation we have w? = 144 — d2. The stiffness of the beam is S = kwd? = kd3 (144 — d2)"/?,
where 0 < d < 12. Also, S'(d) = X UB-) . ritical points at 0, 12, and 61/3. Both d = 0 and

V144 — @2
d = 12 cause S = 0. The maximum occurs atd = 6\/3. The dimensions are 6 by 6\/§ inches.
()
.
1
6000 60001
5000f 5000
4000 4000
3000 3000
2000 s = w(144 -w?)%? 20004
2
1000 1000 s=1aa-d
T4 6 8§ 10 12 T 4 ¢ § 10 1

Both graphs indicate the same maximum value and are consistent with each other. The changing of k has
no effect.

s =10cos(nt) = v = —107 sin(wt) = speed = |107 sin (7t)] = 107 [sin(wt)] = the maximum speed is

107 ~ 31.42 cm/sec since the maximum value of |sin (7t)| is 1; the cart is moving the fastest at t = 0.5 sec, 1.5 sec,
2.5 sec and 3.5 sec when |sin (7t)| is 1. At these times the distance is s = 10 cos (g) =0cmand

a= —107% cos(mt) = |a| = 1072 |cos (wt)| = |a| = 0 cm/sec?

la] = 1072 |cos (7t)| is greatest at t = 0.0 sec, 1.0 sec, 2.0 sec, 3.0 sec and 4.0 sec, and at these times the
magnitude of the cart's position is |s| = 10 cm from the rest position and the speed is 0 cm/sec.
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46. (a) 2sint=sin2t=2sint—2sintcost=0 = (2sint)(1 —cost) = 0 = t = km where k is a positive integer
(b) The vertical distance between the masses is s(t) = [s1 — so| = ((s1 — 52)2)1/2 = ((sin 2t — 2 sin t)2)1/2
= §/(t) = (1) ((sin 2t — 2 sin ©2)/*(2)(sin 2t — 2 sin )(2 cos 2t — 2 cos 1) =

4(2 cos t+ 1)(cos t — 1)(sin t)(cos t — 1) 27 4z -
fsin 20— 2 sin ] = critical times at 0, 57, m, =, 27; then s(0) =

s (%) = |sin (%) — 25sin (2 )|:3\/_ s(m) =0, s(4”)—|sm(8’)725m(§)| ‘/—5(27r)—0
3

= the greatest distance is att= = and = 4”

2(cos 2t — cos t)(sin 2t — 2 sin t)
[sin 2t — 2 sin t|

E WY

M’

47. (@) s = /(12— 1202 + (81)2 = ((12 — 120)? + 64¢2)"/*
s —-1/2 — s
(b) & =1((12 1202 +642) *[2(12 — 120)(—12) + 128(] = Tt = G|, = —12knots and

% -, = 8knots
(c) The graph indicates that the ships did not see (d) The graph supports the conclusions in parts (b)
each other because s(t) > 5 for all values of t. and (c).
s s

s =N(12-124% + 642

t

1 2 3
//_ld_s_ 208t — 144
dt

:1(12-1 212 + 64

N -104 -

t i

-1 l\ 24
(i55)

13 Y13

208 _ M
. ds _ (208t — 144> 2082 _
() lim § = tlﬂ‘}x 44— 02 1 642 \/ lim =\ 1ate =V 208 = 4/13

t— o0 t— oo 144(7—1 +64

which equals the square root of the sums of the squares of the individual speeds.

48. The distance OT + TB is minimized when OB is
a straight line. Hence Za = /3 = 6; = 0s.

>

GZB

o

49, If v = kax — kx%, then v = ka — 2kx and v/ = =2k, so0vV =0 = x = 5. Atx = § there is a maximum since

v’ (%) = —2k < 0. The maximum value of v is kTaZ )

50. (a) According to the graph, y'(0) = 0.

(b) According to the graph, y'(—L) =

(c) y(0) =0,s0d = 0.Now y'(x) = 3ax? + 2bx + ¢, so y'(0) = 0 implies that ¢ = 0. There fore, y(x) = ax® + bx* and
y'(x) = 3ax® + 2bx. Then y(—L) = —al® + bL? = Hand y'(—L) = 3aL? — 2bL = 0, so we have two linear

equations in two unknowns a and b. The second equation gives b = @. Substituting into the first equation, we have

—al? + 3aL =H,or %5- =H,s0a=2y; 1 Therefore, b = 3z 1 and the equation for y is

y(x):2%x3+3 L x? ory() H[ (E) +3(%) }
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The profitis p = nx — nc = n(x — ¢) = [a(x — ¢)~* + b(100 — x)] (x — ¢) = a+ b(100 — x)(x — ¢)
= a+ (bc + 100b)x — 100bc — bx?. Then p’(x) = bc + 100b — 2bx and p”(x) = —2b. Solving p'(x) =0 = x = 5 +50.
Atx = 5 + 50 there is a maximum profit since p”(x) = —2b < 0 for all x.

Let x represent the number of people over 50. The profit is p(x) = (50 + x)(200 — 2x) — 32(50 + x) — 6000
= —2x% + 68x + 2400. Then p'(x) = —4x + 68 and p” = —4. Solving p'(x) =0 = x = 17. Atx = 17 there is a
maximum since p”(17) < 0. It would take 67 people to maximize the profit.

(@) A(Q) =kmq™!+cm+ 5q, whereq >0 = A'(Q) = —kmq?+ 1 = "qzz‘qik“‘ and A”(q) = 2kmq~®. The
critical points are — ZkTm , 0, and 2kTm , but only 4/ ZkTm is in the domain. Then A” (,/ 2km) >0 = at
q = 1/ 3™ there is a minimum average weekly cost.

) A(@ = @+cm+gq:kmq‘l+bm+cm+%q,whereq>0 = A'(qQ)=0atq= \/21““ as in (a).

2km

Also A”(q) = 2kmq 3 > 0 so the most economical quantity to order is still ¢ = km which minimizes the

average weekly cost.

c(x

We start with ¢(x) = the cost of producing x items, x > 0, and = the average cost of producing x items, assumed to

be differentiable. If the average cost can be minimized, it will be at a production level at which & ( & >> =0

= % = 0 (by the quotient rule) = x ¢/(x) — c(x) = 0 (multiply both sides by x?) = ¢/(x) = @ where ¢/ (x) is
the marginal cost. This concludes the proof. (Note: The theorem does not assure a production level that will give a
minimum cost, but rather, it indicates where to look to see if there is one. Find the production levels where the average cost

equals the marginal cost, then check to see if any of them give a mimimum.)

The profit p(x) = r(x) — c(x) = 6x — (x> — 6x% + 15x) = —x® + 6x> — 9x, where x 0. Then p’(x) = —3x> + 12x — 9
= —3(x — 3)(x — 1) and p”(x) = —6x + 12. The critical points are 1 and 3. Thus p”(1) =6 > 0 = atx = I thereis a
local minimum, and p”(3) = —6 < 0 = at x = 3 there is a local maximum. But p(3) = 0 = the best you can do is
break even.

The average cost of producing x items is ¢(x) = @ =x% — 20x + 20,000 = ¢’(x) = 2x — 20 = 0 = x = 10, the

only critical value. The average cost is €(10) = $19, 900 per item is a minimum cost because ¢”(10) = 2 > 0.

Let x = the length of a side of the square base of the box and h = the height of the box. V = x>h = 48 => h = i—?. The
total cost is given by C = 6 - x> + 4(4 - xh) = 6x> + 16x (%) = 6x2 + 18 x > 0= C’ = 12x — 168 = 12768

C'=0= 27% — )= 2%’ ~ 768 =0 = x =4;C" = 12+ 1330 = C"(4) = 12+ 3% > 0 = local minimum.
x=4=h= =3andC4) = 6(4)> + 768 — 288 = the box is 4 ft x 4 ft x 3 ft, w1tham1n1mum cost of $288

Let x = the number of $10 increases in the charge per room, then price per room = 50 + 10x, and the number of rooms
filled each night = 800 — 40x = the total revenue is R(x) = (50 + 10x)(800 — 40x) = —400x> + 6000x + 40000,
0 < x <20 = R'(x) = —800x + 6000; R'(x) = 0 = —800x + 6000 = 0 = x = %;R”(x) = —800

= R”(£) = —800 < 0 = local maximum. The price per room is 50 + 10(%) = $125.

We have §& = CM — M?. Solving

maximum.

dM’)—C 2M=0=>M= Also,%:72<0éatM:%thereisa
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60. (a) If v = cror? — cr?, then v/ = 2cror — 3cr? = cr (2ry — 3r) and v/ = 2crg — 6¢r = 2¢ (ry — 3r) . The solution of

vV =0isr=0or 2r° , but 0 is not in the domain. Also, v/ > 0 forr < 2r° and v < Oforr > 2“’ = atr= 2;“

there is a maximum.
(b) The graph confirms the findings in (a).
v

0.0175
0.015
0.0125
0.01
0.0075
0.005
0.0025

0.1 0.2 0.3 0.4 0.5

6l. Ifx >0,then(x—1* 0= x*4+1 2x = XZT“ 2. In particular if a, b, c and d are positive integers,

a+1 b? c? d?
ten (5:2) (550) (=) () 10
1/2

X ! _ (32+X2)1’27X2(e12+x2)7 _ a2 exr—x2 a’
e o T = @) = @ro? @y >0
= f(x) is an increasing function of x

62. (a) f(x)=

2 (h2 2y 1/2
(b) g(X) = /b2+(d X)Q :> g (X) b +(d X) ) b;:‘r(?d _’2)2([) +(d X) )
= (B> +(d=x)%) +(d—x)? b2

= 01 @) o (d o < 0 = g(x)is a decreasing function of x

(c) Since ¢y, ¢y > 0, the derivative 4 d is an 1ncreasmg function of x (from part (a)) minus a decreasing

function of x (from part (b)): & = C—llf(x) -1 g(x) = 375 = Cll f/(x) — L g'(x) > 0 since f'(x) > 0 and

gdx) <0 = gt is an increasing functlon of x.

63. At x = c, the tangents to the curves are parallel. Justification: The vertical distance between the curves is
D(x) = f(x) — g(x), so D'(x) = f'(x) — g'(x). The maximum value of D will occur at a point ¢ where D’ = 0. At
such a point, f'(c) — g'(c) = 0, or f'(c) = g'(c).

64. (a) f(x) =3+ 4 cos x + cos 2x is a periodic function with period 27
(b) No, f(x) =3 +4cosx +cos2x =3 +4cos x + (2cos?x — 1) =2 (1 + 2 cos x + cos? x) = 2(1 + cos x)> 0
= f(x) is never negative.

65. (a) Ify =cotx — \/EcscxwhereO < x < m,theny = (csc x) (\/E cot X — csc X) Solving y' =0 = cos x = ﬁ

= x = 7. For0 <x < 7 wehavey' > 0,andy’ < 0 when 7 < x < m. Therefore, at x = 7 there is a maximum
value of y = —1.

(b)

y

-2
y = cotx - V2 esc x
-4

-6

-8

The graph confirms the findings in (a).
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66. (a) Ify=tanx+ 3 cotx where 0 < x < %,theny’:seCQX—3c502x. Solvingy' =0 = tanx = j:\/§
= X = :t%,butfgisnotinthedomain. Also, y" =2 sec?xtan X + 6 csc?x cot x > 0 forall 0 < x < %

Therefore at x = 5 there is a minimum value of y = 2\/5 .

(b)

y

80
60

40 y=tanx+3cotx

20

1 1 1
025 05 075 1 125 1.5

The graph confirms the findings in (a).

67. (a) The square of the distance is D(x) = (x — %)2 + (Vx+ O)2 =x%—2x+ $, 50 D/(x) = 2x — 2 and the critical
point occurs at x = 1. Since D'(x) < 0 for x < 1 and D’(x) > 0 for x > 1, the critical point corresponds to the
_ 5

minimum distance. The minimum distance is \/D(1) = 5.

(b)

¥, D(x)

D(x):,t2—2x+%

1
0.5

1 1
5 2 25

The minimum distance is from the point (%, O) to the point (1, 1) on the graph of y = \/§ and this occurs at the

value x = 1 where D(x), the distance squared, has its minimum value.

68. (a) Calculus Method:
The square of the distance from the point (1, \/§> to (x, V16 — x2) is given by
2
D(x) = (x —1)* + (\/16—)(2—\/3) =x2—2x4+1+16—x2 —2/48 — 3x2+3 = — 2x + 20 — 21/48 — 3x2.
ThenD'(x) = —2—1- \/4#—(—&) = -2+ \/ﬁ. Solving D'(x) = 0 we have: 6x = 21/48 — 3x2
= 36x% = 4(48 — 3x?) = 9x® = 48 — 3x®> = 12x? = 48 = x = =+ 2. We discard x = —2 as an extraneous solution,
leaving x = 2. Since D’'(x) < 0 for —4 < x < 2 and D'(x) > 0 for 2 < x < 4, the critical point corresponds to the

minimum distance. The minimum distance is 1/D(2) = 2.
Geometry Method:

The semicircle is centered at the origin and has radius 4. The distance from the origin to (1, \/g) is

2
12 + <\/§) = 2. The shortest distance from the point to the semicircle is the distance along the radius

containing the point (1, \/5) That distance is 4 — 2 = 2.
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(b)

The minimum distance is from the point (1, \/§> to the point (2, 2\/§> on the graph of y = /16 — x2, and this

occurs at the value x = 2 where D(x), the distance squared, has its minimum value.

4.6 NEWTON'S METHOD

2
2 ’_ _ XptXn—1 . _ 1+1—-1 _ 2
1. y=x +x71éy—2x+1:>xn+|—xnf"2xnﬁ,xo—1:>x1—lf T = 5
4,2
2 s+5—1 2 446-9 2 1 13 . _ _ 1—1-1 _
:>X2:§—%$X2:§—12+9:g—ﬁ:ﬁ~.61905,)§0——1?Xl—l—Tﬂ——z
3
A~ 4-2-1 _ 5 .
= X9 = —2 T = 3 ” 1.66667
3
X2 +3x,+1
2. y=x343x+1 = y =3x>+3 :>XHHZXH—W;X():O@x1:0—%:—%
n
1
1 —x—l+1 1 1 29
:>X2:7§7217:7§+%:7%N70.32222
I3
3 y=xltx-3 = y =441 —x, - e S
Ly =Xx"+Xx =y =4x"4+1 = X1 =X, &1 X0 =1 = X = 41 5
— x, — 6 _ @2 +8-3 6 1296+750-1875 _ 6 _ 171 — 5763 116542 x0 — —1 = x; — —] — 1=1=3
275 L 4320+ 625 5 4945 — 4945 ~ - > 20— 1= —4+1
_ .~ 16-2-3 _ 151
=—-2 = X9 =—-2 ST = 2+ 37 = —3 ~ —1.64516
4 =2 2 1 ) 2 _ ZXn*XEJFl. =0 =0 0—-0+4+1 __ 1
L y=2x—x+1 =y =2- x:>xn+1—xn—72_2xn X0 =0=x1=0-5=F"=—3
_o_ 1 Zl=dHl 11 s e o 4—441 _ s _ 5 5-%41
= X9 = 3 271 = 2—|—12— 7 ~ .41667,X[)—2:>X1—2 5—4 — 3 :>X2—2 _—
5 20-254+4 _ 5 1 _ 29 .
2 —12 — 2 2 1 ~ 2.41667
4 625
! I Ay3 _ =2, _ _ 1-2 _ 5 5 %2 5 625-512
50 y=x*—-2 = y =4x" = X, =X, — Xxg,xo—l = x=1-"=3 :>X2—Z—25% =31 S0
_ 5 113 _ 2500—113 __ 2387 .
— 4 2000 — ~ 2000 _2000“‘1'1935
4 625
. X:—2 _ 2222
6. From Exercise 5, X,,, =X, — 25 ;X0 = —1 = )(1:—1—1_—2:—1—12—§ = Xg= —2 26 s
4x3 4 4 4 4 16
5 625-512 _ 5 13 .,
4 “000 = — 1+ 2000 ~ —1.1935

7. f(x9) =0and f'(xg) #0 = X, =X, — ff,(&">) gives Xx; = X9 = Xo =Xg = X, = Xg foralln 0. Thatis, all of

the approximations in Newton's method will be the root of f(x) = 0.

8. It does matter. If you start too far away from x = 7, the calculated values may approach some other root. Starting with

g as the root, notx = 2

xg = —0.5, for instance, leads to x = — 3
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fx) _ g _ £
f'(xo0) f'(h) y

e () () -

9. Ifxg=h>0 = xy =%x9 —

ifxo=-h<0 = x =x — 0= [0 . | - x
h
(Tﬁ) yz{\/——x,jv<0
10. fi _ ¢1/3 ! — (1) -2/3 _ 111/3

. (X) =X = (X) - (g) X = Xnr1 = Xp — W Y
= 2x3% =1 = x; = 2, =4,x3 = —8,and %
x4 = 16 and so forth. Since |x,| = 2|x,_;| we may conclude H;ﬂ)(
thatn — oo = |x,| — oc. o) !

11. i) is equivalent to solving x*> — 3x — 1 = 0.
ii) is equivalent to solving x3 — 3x — 1 = 0.
iii) is equivalent to solving x3 — 3x — 1 = 0.
iv) is equivalent to solving x* — 3x — 1 = 0.
All four equations are equivalent.

12. ) =x —1—=05sinx = f'(x) =1-05c0sX = Xy =X, — 1IN iy = |5 then x; = 1.49870

13. f(x) = tan x — 2x = f/(x) = sec?Xx — 2 = x,,, = X, — W =20 gy = 12920445

sec? (Xn)
= X9 = 1.155327774 = X164 = X17 = 1.165561185

xp —2x3 —x2—2x,+2 |
4x3 —6x2 —2xp —2

14, fx) =x' —2x3 = x> = 2x +2 = f/X) =4x3 —6x> = 2x — 2 = Xp =X, —
if xg = 0.5, then x4, = 0.630115396; if x; = 2.5, then x4 = 2.57327196

15. (a) The graph of f(x) = sin 3x — 0.99 + x? in the window Y

—2 <x <2, -2 <y < 3 suggests three roots. 2

W

y = sin(3x) - 0.99 + x

However, when you zoom in on the x-axis near x = 1.2,
you can see that the graph lies above the axis there.

There are only two roots, one near x = —1, the other 1
near X = 0.4. aN .
(b) f(x) =sin3x —0.99 +x? = f'(x) = 3 cos 3x + 2x & [ LI
sin (3x,) — 0.994x2 "

= Xpu = Xy — and the solutions

3 cos (3x,) + 2x,
are approximately 0.35003501505249 and
—1.0261731615301
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16. (a) Yes, three times as indicted by the graphs y ’;

(b) f(x) =cos3x —x = f'(x) -0-545'

=-3sin3x -1 = X, / E

cos (3xp) — Xn | Il

=X, — oG -1 at - x i

approximately —0.979367, \\ ':
—0.887726, and 0.39004 we have - A

cos 3x =X

4442
17 00 = 2x* =42 + 1 = /() = 8x% = 8x = Xoy = X, — 2wl i x) = 2, then xg = —1.30656296; if

x9 = —0.5, then x3 = —0.5411961; the roots are approximately =+ 0.5411961 and =+ 1.30656296 because f(x) is
an even function.

@na) =3 = x; =3.13971 = xy = 3.14159 and we

18. f(x) =tanx = f'(x) =sec’X = X = X, — o ERE

approximate 7 to be 3.14159.

19. From the graph we let xo = 0.5 and f(x) = cos x — 2x

= X =% — S oy = 45063 2

= X9 = .45018 = atx ~ 0.45 we have cos x = 2x.

y = COS X
-2
-3
20. From the graph we let x) = —0.7 and f(x) = cos x + x 3)'
o Xy + €08 (Xp) o
= Xt =X = ) = x; = —.73944 y=-x ,
= X9 = —.73908 = atx ~ —0.74 we have cos x = —Xx.

21. The x-coordinate of the point of intersection of y = x*(x + 1) and y = 1 is the solution of x*(x + 1) =1
= x* + x> — 1 = 0 = The x-coordinate is the root of f(x) = x* + x> — 1 = f/(x) =3x> + 2x + 5. Letxg = 1
x;? + xf -1

b = x; = 0.83333 = xp, =0.81924 = x3 = 0.81917 = x; =0.81917 = r =~ 0.8192

= Xnp1 = Xn = 3x2 4 2%, + &
n n T2

22. The x-coordinate of the point of intersection of y = \/g and y = 3 — x? is the solution of \/§ =3-x?
= /x — 3+ x? = 0 = The x-coordinate is the root of f(x) = \/x — 3+ x> = f'(x) = 2*\1/; +2x. Letxg =1

S xpr = %= N L = 1= xp = 135556 = x; = 1.35498 = x; = 1.35498 = 1 ~ 1.3550
5 K
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23. If f(x) = x* + 2x — 4, then f(1) = —1 < 0 and f(2) = 8 > 0 = by the Intermediate Value Theorem the equation
X34+ 2x0 — 4
3x242

Thenxy =1 = x; =12 = x» =1.17975 = x3 =1.179509 = x4 = 1.1795090 = the root is approximately
1.17951.

x3 4+ 2x — 4 = 0 has a solution between 1 and 2. Consequently, f'(x) = 3x2 4+ 2and x,,, = X, —

24. We wish to solve 8x* — 14x3 — 9x% + 11x — 1 = 0. Let f(x) = 8x* — 14x® — 9x% + 11x — 1, then

4 3 2
’ _ 3 _ 2 o o 8xy — 14y —9xp 11X, — 1
f'(x) = 32x° — 42x 18x+ 11 = X, =X, 35xF — A3 — 8%, 1 11

Xo | approximation of corresponding root
-1.0 —0.976823589
0.1 0.100363332
0.6 0.642746671
2.0 1.983713587
25. f(x) = 4x' —4x% = f'(x) = 16x> — 8x = Xxj;; =X, — ft,(():i)) =X — Zi;f;. Iterations are performed using the

procedure in problem 13 in this section.

(a) Forxy=—2orxy= —0.8,x; — —1 asi gets large.

(b) Forxy = —0.50rxy = 0.25, x; — 0 as i gets large.

(¢) Forxy=0.80rxy=2,%x; — 1asigets large.

(d) (If your calculator has a CAS, put it in exact mode, otherwise approximate the radicals with a decimal value.)

For xg = —*%= or xg = —*5—, Newton's method does not converge. The values of x; alternate between

V21

7

as 1 increases.

26. (a) The distance can be represented by

D(x) = \/(X -2+ (x2+ %)2 , where x 0. The

distance D(x) is minimized when
fx) = (x =2 + (x* + %)2 is minimized. If
f) = (x =22 + (x2 + )% then

f'(x) =4 (x*+x —1)and f"(x) = 4 (3x2 + 1) > 0.
Now f'(x) =0 = x3+x—-1=0 = x(x>+1)=1
= X =g
b Letg) = oty —x=(2+1)" —x = g =—(C+1) 720~ 1= i

1
-— —X
(x%+l n)

= Xy = X, — ;Xo =1 = x4 = 0.68233 to five decimal places.
—2Xpn
((x,’—iﬂ)gl)

40
27. f(x) = — DY = f/x) =40x - 1> = X, =X, — 4(())((‘;__1)1)39 = 39)2‘0+1 . With xy = 2, our computer

gave Xgy = Xgg = Xgg = - = X900 = 1.11051, coming within 0.11051 of the root x = 1.

28. Sinces=10=3=r0=0= % Bisect the angle 6 to obtain a right tringle with hypotenuse r and opposite side

3
of length 1. Then sin § = 1 = sin % =1 =sin(2) =1 =sin 3 — 1 = 0. Thus the solution r is a root of
in i —rl
f(r) =sin(32) — L = f'(r) = —5cos(2) + o =1 =101 =1, — % = 1 = 1.00280
=1, = 1.00282 = r; = 1.00282 = r =~ 1.0028 = 0 = W ~ 2.9916
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4.7 ANTIDERIVATIVES

. (@ x b % © %X —x>+x

2. (a) 3x2 b © © % —3x*+8x

3. @ x7? b) — (© —% +x?+3x
4. (@) —x2 b) -+ © 5 +%—x

5. (@ =L (b) = (©) 2x+2

6. () & (b) © %+

7 @ VxS (b) VX © 3VxE+2X
8. (a) x*/3 (b) 1x%/3 () 3x¥3 4 3x%38

9. (a) x*/? (b) x/3 (© x~1/3

10. (a) x'/2 (b) x1/2 (c) x3/2

11. (a) cos(mx) (b) —3cos x (©) =™ 4 cos (3x)
12. (a) sin(mx) (b) sin (%) (© (2)sin (%) +wsinx
13. (a) tanx (b) 2tan (%) (©) —%tan (37")

14. (a) —cotx (b) cot (%) (c) X+ 4 cot(2x)

15. (a) —cscx (b) %CSC(SX) (¢) 2csc (%)

16. (a) secx (b) 3 sec(3x) (©) 2Zsec(Z)

17. [(x+Ddx=% +x+C 18. [(5—6x)dx=5x —3x>+C

19. [+ d=F+E+C 2. [(§+40)d=5+0+cC

21 [(2x% = S5x+7)dx = Lx' - I+ Tx 4 C 22 [(1-x=3)dx=x—1x*— Ix*+C

3. [ (- dx= [(x2-x-Ddx=5 - _lxic=-1_¥_1x4C

u [ (-2

>
o
>
Il
~—
—
=
|
[\
>‘<|
w
+
[\e]
>
S—
o
>
Il
D=

x—G§)+§+C:§+%+ﬂ+C
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25. [xdx="rtC=3xl4C 2. [xdx =7 +C= L +C
27 [ (Vx+3R) de= [ (32 4x103) dx = 5 4 57 4 C = 3x32 4 §x¥9 4+ C

8 [(F+Z)ax=[(xPea ) a=1 () +2(3F) +C= 12+ ax2 1 C
9. [(sy—F)ay=[(y-2y")ay=4 —2(5) +Cc=4y -ty +C

0. [ (- dy=[ (G -y ") dy=dy— (L) +C=§+h+cC

3 [x(-x o= [(x -2 dx=F —2(5)+C=x+24C

32. fx’g’(x—l—l)dx:f(x*Z—i—x’?’)dx:§+<%)+C:—%_#+C

B[ V= [ (5 ) de= [ (e a= 4 (7)) +C=2vi- Zac
. [ 5la= [ (§+5)d= [ @t o) a=4(5)+ () +C=-3- 2 +C

35

. [ —2costdt=—2sint+C
37. [7sinfdf=-2lcos+C

39. f—3cchde:3cotx—|—C

36. [ —5sintdt=5cost+C
38. [3cos50df = 2sin50+C

40. [— =X dx = — x4 C

41. f%d@zf%cscﬁJrC 42. f%sec&tan@d@:%secGJrC

43. [ (4secxtanx —2sec?x) dx = 4secx — 2 tanx + C

J

1

2

2

CSC“ X — CSC X cot X = L

44, dx=—1lcotx+Lcscx+C
2 2

45. f(sin2x—c502x)dx:—%cost—l—cotx—i—C 46. f(2cos2x—3sin3x)dx:sin2x—|—cos3x+C
47 [ L= [ (4 deosd) do= Fua b (S58) £ C= § 4884 C

1 — cos 6t _ 1 1 _ 1 1 (sin 6t _t sin 6t
48. [ 1=gfdi= [ (5 - cos6t) dt=jt—§ (%) +C=3 -4 C

49. [(1+tan’0)df = [sec?#df = tan 6+ C

50. [(2+tan?0)dd = [(1+1+tan?0)df = [ (1+sec?§)dd =6 +tand +C

51. [co?xdx = [ (cse?x — 1) dx cotx —x+C
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54.

55.

56.

57.

58.

59.

61.

62.

63.

64.

65.

66.

67.

68.
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[ (1 —co?x)dx = [ (1—(esc?x — 1)) dx = [ (2 —ese?x) dx = 2x + cot x + C

fcos@(tanQ—i—secQ)dG:f(sin9+l)d9:—cos@+9+C

fcsclcgsizinﬁde:f(cscgsizmﬁ) (2123) dezfﬁde:fcngde—fsecQHd@—tanG—}-C

(ﬂ( ((7x 2)t + C) 47 ;32)3(7) — (7x — 2)3

% (_ (3x—;5)*1 n C) _ (_ (3x+§)—2(3)) — (3x+5)2

4 (Ltan(5x — 1)+ C) = £ (sec? (5x — 1)) (5) = sec? (5x — 1)

0% (73 cot (X

7) +C) = =3 (~esc? (151)) (3) = esc (*54)

1 DD —xM) _ 1
+0) = (DD + D72 = Ly 60. & (35 +0) = ey

(ﬁ( (x+1

2 .
(a) Wrong: % (% 51nx—|—C) = —smx+—cosx—xsmx+—cosx;«éxsmx

(b) Wrong: %(—x cos X + C) = —cos X + X sin X # X sin X
(c) Right: %(—xcosx-ﬁ-sinx—i—C):—cosx+xsinx—|—cosx:xsinx

(a) Wrong: (S"C o4 C) 3sec’d Se‘ 9 (sec § tan #) = sec® 6 tan O # tan 0 sec? 6

o
(b) Right: d(, ¢ (L tan?0+C) = 5 (2 tan 6) sec® § = tan @ sec’ §
(l
2

(c) Right: sec? 0 + C) 3 1 (2 sec ) sec 0 tan = tan 6 sec? 0
(a) Wrong: L (u +c) — 3D ok 4 12 £ (2x 4 1)°
(b) Wrong: ix (2x 4 1> + C) = 32x + 12(2) = 6(2x 4 1) # 3(2x + 1)?
(¢) Right: & (2x+1)*+C) =6(2x + 1)
1/2 —1/2 X
(@) Wrong: & (2 4+x+0)"* =1 (2 +x+C) /(2x+1):2\/ﬁ7§\/2X+1
1/2 —1/2 X
(b) Wrong: & ((x*+x) / —|—C) =1 (x> +x) Pox+1) = % #/2x + 1

(c) Right: & (_% (\/2x+1)3+C) =4 (1x+1D2+C)=22x+DY2Q) = /2x+ 1

cohee d [ (x£3)3 oa(x43\2(x—=2)1—(x4+3)1 _ A (x+3)% -5 __ —15(x+3)’
Right &((xw +C) =308 T =y e
Wrong: % (sinixz) +C> _ x-cos(xz)(Z);lfsin(xz)J _ 2x2cos(xzx)zfsin(x2) ] xcos(xz)x; sin(x?)

Graph (b), because _235 = y=x>+C. Theny(l) =4 = C=3.

Graph (b), because;i - = y= f—x +C. Theny(—-1)=1 = C=
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$=2x-7=y=x>-Tx+Catx=2andy=0wehave 0=2>-72)+C = C=10 = y=x>—7x+ 10

%:10—X:>y:lOX—%Z—I—C;atX:Oandy:—1wehave_1:10(0)_%2+C:>C:_1:>y:1()x_x2_2_1

j—i:x%+x:x’2+x = y:fx’1+%2+C;atX:2andy:lwehave1272’1+2;+C = C=-1
X2 _ 1 1

:> __X—1+___0r __l+x_2__
y= 7 T 20IYy=—"yT% 73

% =0x2 —4x+5 = y=3x3-2x2 +5x+ C;atx = —landy = O we have 0 = 3(—1)® — 2(—=1)> + 5(—=1) + C

= C=10 = y=3x3-2x> +5x + 10

&y — 3x23 = y = 3/ +C=9atx =934+ Cjatx=—landy = —5wehave -5 =9(-1)/*+C = C=4
dx

ol

= y=9344

%:%ﬁzéx’lﬂ = y=x/24+Cjatx=4andy=0wehave 0 =42 4+C = C=-2 = y=x/2-2

& —14cost = s=t+sint+C;att=0ands=4wehave4d=0+sin0+C = C=4 = s=t+sint+4

%:costJrsintés:sintfcostJrC;att:ﬂands:lwehavelzsinwfcos7r+C = C=0

= s=gsint—cost

%:fﬂsinwﬁ = r=cos(md) +C;atr=0and 8 = 0O wehave 0 = cos (70) + C = C= -1 = r=cos(wf) — 1
& —cosmd) = r=1 sin(rf)+ C;atr=1andf =0wehave 1l = Lsin(n0)+C = C=1 = r=Lsin(xf) +1

%:%secttant = V:%sect—I—C;atV:landt:OwehaveI:%sec(O)—i—C = C:% = V:%sect—i—%

% =8t+csc’t = v:4t2—cott+C;atV:—7andt:gwehave—7:4(%)2—cot(%)+C = C=-7 —7°

= v=4t> —cott—7 — 7?2

j% =2-6x = §=2x-3x+Cpat & =4andx = 0 we have 4 = 2(0) — 3(0)* + C; = C; =4

= %:2x—3x2+4 = y=x>-x34+4x+Cy;aty=1landx =0wehave 1 =02 —0? +4(0) + C;, = Cy =1

= y=x*-x*+4x+1

dy

2.
&0 = d—y:Cl;atg—)f:2andx:0wehaveC1:2 =

dx? dx
have 0 =2(0)4+Cy = Co =0 = y=2x

=2 = y=2x+Cy;aty=0and x = 0 we

Er 2= - 2y Cpat® =landt=1wehavel = ()2 +C =>C =2= = 242

=r=t14+2t+Cyatr=1andt=1wehave | =171 4+2(1)+Cy = Cy=—-2=r=t"14+2t—2o0r
r=14+2t-2

34y
13

2 3
+C = C=0= $=3% = s=LC+Cyat

dzszﬁé@:E+C1;at$:3andt:4wehaV63: it

@ T % dt 16
s:4andt:4wehave4=%+c2 = C=0= s:%
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=6 = &Y —6x+Cy;

dx3 dx?

at &Y — —gandx = O we have —8 = 6(0) + C; = C; = —8 = &3 —6x 38
= g—y—3x —8x+Cyat ¥ =0andx = 0 we have 0 = 3(0)> —8(0) + C; = C; =0 = & =3x> - 8x
= y=x>—-4x>+Cy;aty=5andx =0wehave 5=0° —4(0)> +C3 = C3=5 = y=x>—4x>+5

‘21375:0:> ‘(jhz Cl,atdtzf Zandt—Owehavedtof—2:> %——Ztﬁ-Cg,atd —%andtsze
have — 1 = —2(0)+C, = Co=-1 = ¥ =21 = 9=~ Lt+Cyatd=+/2andt =0 we have

V2= -0 L0+C = G=v2= 0= -11+2

y@ = —sint+cost=1y” =cost+sint+ Cy;aty” =7 and t = 0 we have 7 = cos (0) + sin (0) + C; = C, = 6
=y”" =cost+sint+6 = y’ =sint—cost+ 6t+ Cy;aty” = —1 and t = 0 we have
—1=sin(0) —cos (0) +6(0) +Cy = Cy, =0=y" =sint—cost+ 6t =y = —cost— sin t + 3t> + Cs; at

y' = —landt=0wehave —1 = —cos(0) — sin(0) + 3(0)> + C3 = C3=0=y = —cost— sint + 3t>
=y=—sint4+cost+t>+Cyaty =0andt = 0 we have 0 = —sin (0) 4 cos (0) + 0> + C4 = C4 = —1
=y=-sint+cost+t3—1

y# = —cos x + 8sin(2x) = y” = —sinx — 4 cos (2x) + C;; at y” = 0 and x = 0 we have

0= —sin(0) —4cos20)+C; = C; =4 = y" =—sinx —4cos(2x) +4 = y”" = cos x — 2 sin(2x) + 4x + Cy;
aty” = 1 and x = 0 we have 1 = cos (0) — 2 sin(2(0)) +4(0) + C; = Cy =0 = y” = cos x — 2 sin (2x) + 4x

= y' =sinx + cos (2x) + 2x> + C3; aty’ = 1 and x = 0 we have 1 = sin (0) + cos (2(0)) + 2(0)> + C3 = C3 =0
= y =sinx + cos (2x) + 2x> = y:—cosx+%sin(2x)—|—%x3+C4;aty:3andx:Owehave
3=—cos(0)+1sin(20)+2(0P+Cy = C;=4 = y=—cosx+ 3 sin(2x) + 2x* +4

m=y =3,/x=3x"? = y=2x2+ Cjat(9,4) wehave 4 = 2(9)2+ C = C=-50 = y =2x32 - 50

Yes. If F(x) and G(x) both solve the initial value problem on an interval I then they both have the same first derivative.
Therefore, by Corollary 2 of the Mean Value Theorem there is a constant C such that F(x) = G(x) + C for all x. In
particular, F(xqg) = G(x¢) + C, so C = F(xg) — G(xg) = 0. Hence F(x) = G(x) for all x.

gi =1-%x13 = y= f(l — 4x13) dx = x —x*® + C; at (1,0.5) on the curve we have 0.5 = 1 — 1*/% + C

= C=05= y=x—x"41

gi—x—1:>y_f(x—1)dx———X+C at (—1, 1) on the curve we have 1 = & — (— 1)+C:>C——%
= y:;—x—%

d . .
% =sinx—cosx = y= f(sm X — cos X) dx = —cos x — sin X + C; at (—m, —1) on the curve we have

—1=—cos(—m) —sin(—m)+C = C=-2 = y=—cosx—sinx—2

dy = \[+7rsm7rx— §x’1/2+7rsin7rx = y:f(%x’1/2+sin7rx) dx = x!/2 — cos mx + C; at (1,2) on the

curvewehaveZ:11/2700s7r(1)+C = C=0 = y=,/x—cos7x

(@ £=98t—3 = s=49-3t+C;()ats=5andt =0wehave C=5 = s =49t — 3t +5;
displacement = s(3) — s(1) = ((4.9)(9) —9+5) — (4.9 — 3 4+ 5) = 33.2 units; (ii) at s = —2 and t = 0 we have
C= -2 = s=409t -3t — 2; displacement = s(3) — s(1) = ((4.9)(9) — 9 —2) — (4.9 — 3 — 2) = 33.2 units;
(iii) ats = spand t = O we have C = sy = s = 4.9t — 3t + s¢; displacement = s(3) — s(1)

= ((4.9)9) — 9+ sp) — (4.9 — 3 4 sp) = 33.2 units

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI

238  Chapter 4 Applications of Derivatives

96.

97.

98.
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100.
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103

(b) True. Given an antiderivative f(t) of the velocity function, we know that the body's position function is
s = f(t) 4+ C for some constant C. Therefore, the displacement fromt = atot = b is (f(b) + C) — (f(a) + C)
= f(b) — f(a). Thus we can find the displacement from any antiderivative f as the numerical difference
f(b) — f(a) without knowing the exact values of C and s.

a(t) = v'(t) = 20 = v(t) = 20t + C; at (0, 0) we have C = 0 = v(t) = 20t. When t = 60, then v(60) = 20(60) = 1200 =

sec”
Stepl: &=k = ® = ki+Cpat® =88andt=0wehaveC; =88 = & = ke +88 =
s:—k(%)+88t+C2;ats:0andt:0wehaveC2:O = s:—%tz+88t

Step2: £ =0 = 0=—kt+8 = t="5

da
2 b
Step3: 242 = XUl 4 g8 (88) o pap = — G L B9 pgy B8 L j g6

%:*k = %:ffkdt:fktwLC;at%:44Whent:0wehave44:—k(O)JrC = C=44

= % =—-kt+44 = s:—%2+44t+C1;ats:0whentzowehave0:fk(TO)er44(0)+C1 = C; =0

5 442
S os=— %44 Then$ =0 = —kt+44=0 = t=*ands (%) = — LG) 4 aq(%) =45

2
968 1936 968 968 ft

sec?”

@ v=[adt= f(15t1/2 —3t2) dt= 1062 — 6112+ C; £ (1) =4 = 4=101)*2 - 6(D*+C = C=0
= v =102 — 6t'/2

b s=[vdt= f(10t3/2 —6t/2) dt =412 — 432 4 C;s(1) =0 = 0=4(1)2 - 4(1)*?+C = C=0
= 5= 4t7/2 — 4¢3/2

g—:ﬁ =-52 = % = —52t+Cy; at % =0andt=0wehaveC; =0 = % =52t = s=—-2.6t2+Cyats =4
andt=0wehave C; =4 = s=—-2.61°+4. Thens =0 = 0= —-2.61>+4 = t= /5% ~ .24 sec, since t > 0
Ss—a & :fadt:at—i—C;% =vowhent=0 = C=v) = L =at+vy = s=% 4yt +Ci;5 =5
whent=0 = sy = a(2i)2 +V0(O)+C1 = Ci=5s) = s= %2 + vot+ s
The appropriate initial value problem is: Differential Equation: ‘é—if = —g with Initial Conditions: % = vp and
s = sg when t = 0. Thus, % = f—gdt: —gt+ Cy; %(0) =vg = vo=(—2)0)+C; = C; =vp
= % = —gt+vy. Thuss = [(—gt+vo) dt = — 1 g + vt + Co;5(0) = 5y = — 1 (2)(0)* + vo(0) + C2 = Cs = 59
Thus s = — % gt2 + vot 4+ sg.
— 106 Example CAS commands:
Maple:
with(student):
f :=Xx -> cos(x)"2 + sin(x);
ic := [x=Pi,y=1];

F := unapply( int( f(x), x ) + C, x );
eq :=eval( y=F(x), ic );
solnC :=solve( eq, {C} );
Y := unapply( eval( F(x), solnC ), x );
DEplot( diff(y(x),x) = f(x), y(x), x=0..2*Pi, [[y(Pi)=1]],
color=black, linecolor=black, stepsize=0.05, title="Section 4.7 #103" );
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Mathematica: (functions and values may vary)
The following commands use the definite integral and the Fundamental Theorem of calculus to construct the solution
of the initial value problems for exercises 103 - 105.
Clear[x, y, yprime]
yprime[x_] = Cos[x]? + Sin[x];
initxvalue = 7; inityvalue = 1;
y[x_] = Integrate[yprime[t], {t, initxvalue, x}] + inityvalue
If the solution satisfies the differential equation and initial condition, the following yield True
yprime[x]==D[y[x], x] //Simplify
y[initxvalue]==inityvalue
Since exercise 106 is a second order differential equation, two integrations will be required.
Clear[x, y, yprime]
y2prime[x_] = 3 Exp[x/2] + 1;
initxval = 0; inityval = 4; inityprimeval = —1;
yprime[x_] = Integrate[y2prime[t],{t, initxval, x}] + inityprimeval
y[x_] = Integrate[yprime[t], {t, initxval, x}] + inityval
Verify that y[x] solves the differential equation and initial condition and plot the solution (red) and its derivative (blue).
y2prime[x]==D[y[x], {x, 2}]/Simplify
y[initxval]==inityval
yprime[initxval]==inityprimeval
Plot[{y[x], yprime[x]}, {X, initxval — 3, initxval + 3}, PlotStyle — {RGBColor[1,0,0], RGBColor[0,0,1]}]

CHAPTER 4 PRACTICE EXERCISES

1. No,since f(x) = x® + 2x +tanx = f’'(x) = 3x> +2 +sec’x > 0 = f(x) is always increasing on its domain

2. No, since g(x) =csc X +2cotx = g'(x) = —cscxcotx — 2 csc’>x = — o~ Sinzzx =— Sinlzx (cosx+2)<0

= g(x) is always decreasing on its domain

3. No absolute minimum because lim (7 +x)(11 — 3x)1/3 = —c0. Next f/(x) =

1/3 -2/3 _ (A1=30)-0+x) _ _40-=x) _ _ 1 " :
(11 = 3x)3 — (7 4+x)(11 —3x)"2/3 = T = Q" = X= 1 and x = 5 are critical points.

Since f’ > 0ifx < land f’ < 0ifx > 1, f(1) = 16 is the absolute maximum.

4. f(x) = BEL o f(x) = A *<1X>.;21*)§"‘”b> = *@ijf'l’;“) f'(3)=0= —L (9a+6b+a)=0=5a+3b=0.

We require also that f(3) = 1. Thus 1 = % = 3a+ b = 8. Solving both equations yields a = 6 and b = —10. Now,

f'(x) = w sothat f' = ——— | ———| +++4 | +++ | ———. Thus f’ changes sign at x = 3 from
o -1 1/3 1 3

positive to negative so there is a local maximum at x = 3 which has a value f(3) = 1.

5. Yes, because at each point of [0, 1) except x = 0, the function's value is a local minimum value as well as a
local maximum value. At x = 0O the function's value, 0, is not a local minimum value because each open
interval around x = 0 on the x-axis contains points to the left of O where f equals —1.

6. (a) The first derivative of the function f(x) = x? is zero at x = 0 even though f has no local extreme value at x = 0.

(b) Theorem 2 says only that if f is differentiable and f has a local extreme at x = ¢ then f'(c) = 0. It does not
assert the (false) reverse implication f’(¢) = 0 = f has a local extreme at x = c.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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7. No, because the interval 0 < x < 1 fails to be closed. The Extreme Value Theorem says that if the function is continuous

throughout a finite closed interval a < x < b then the existence of absolute extrema is guaranteed on that interval.

8. The absolute maximum is |—1| = 1 and the absolute minimum is [0] = 0. This is not inconsistent with the Extreme Value

Theorem for continuous functions, which says a continuous function on a closed interval attains its extreme values on that

interval. The theorem says nothing about the behavior of a continuous function on an interval which is half open and half
closed, such as [—1, 1), so there is nothing to contradict.

9. (a)

(b)

©

10. (a)

(b)

()

There appear to be local minima at x = —1.75 ¥
and 1.8. Points of inflection are indicated at
. 20
approximately x = 0and x = =+ 1.
10
z - i T

ol = Li8=x2-x5+ 58

f'(x) = x7 — 3x% — 5x* + 15x? = x? (x? — 3) (x> — 5). The patterny’ = — +4++ | +++ | ——— | +++

GV

indicates a local maximum at x = \ﬁ and local minima at x = =+ \/3 .

¥

.0179
.0178
.0177
.0176
.0175 y=2B=x®2-x5 45
.0174
.0173

L I N R A BN e |

T.72 1.74 1.76 .98 X

The graph does not indicate any local
extremum. Points of inflection are indicated at
approximately x = f% and x = 1.

X

—600)

8 5
gzt 20 5. 5
fy =%~ % -5¢ \2+11

f'(x) =x" = 2x* =5+ 19 = x73(x* = 2) (x" = 5). Thepattern ' = ———)(+++ | ——— | -+++ indicates
o V5 2
a local maximum at x = v/5 and a local minimum at x = /2.

y

1.07437

1.2585 1.2599
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. (@) g(t) =sin’t—3t = g'(t) =2sintcost—3 =sin(2t) —3 = g <0 = g(t) is always falling and hence must

decrease on every interval in its domain.

(b) One, since sin?t — 3t — 5 = 0 and sin® t — 3t = 5 have the same solutions: f(t) = sin®t — 3t — 5 has the same
derivative as g(t) in part (a) and is always decreasing with f(—3) > 0 and f(0) < 0. The Intermediate Value Theorem
guarantees the continuous function f has a root in [—3, 0].

(a) y=tanf = g—z =sec?f >0 = y = tan 0 is always rising on its domain = y = tan f increases on every interval
in its domain
(b) The interval [g, 7r] is not in the tangent's domain because tan 6 is undefined at = 7 . Thus the tangent need not

increase on this interval.

(@) fx)=x'+2x> -2 = f/(x) =4x3 4+ 4x. Since f(0) = -2 < 0,f(1)=1>0andf'(x) Ofor0<x<1,we
may conclude from the Intermediate Value Theorem that f(x) has exactly one solution when 0 < x < 1.

() x2= 228 50 = x2=/3-landx 0 = x~ /7320508076 ~ .8555996772

@ y=7=> y = m > 0, for all x in the domain of Z =y = 5 is increasing in every interval in its domain.

b) y=x3+2x = y' =3x2+2>0forall x = the graph of y = x® + 2x is always increasing and can never have a
local maximum or minimum

Let V(t) represent the volume of the water in the reservoir at time t, in minutes, let V(0) = a, be the initial amount and
V(1440) = ay + (1400)(43,560)(7.48) gallons be the amount of water contained in the reservoir after the rain, where

24 hr = 1440 min. Assume that V(t) is continuous on [0, 1440] and differentiable on (0, 1440). The Mean Value Theorem

V(1440) = V(0) _ ap+(1400)(43,560)(7.48) —ag __ 456,160,320 gal
1440-0 - 1440 - 1440 min

= 316,778 gal/min. Therefore at t; the reservoir's volume was increasing at a rate in excess of 225,000 gal/min.

says that for some t; in (0, 1440) we have V'(ty) =

Yes, all differentiable functions g(x) having 3 as a derivative differ by only a constant. Consequently, the
difference 3x — g(x) is a constant K because g'(x) = 3 = % (3x). Thus g(x) = 3x + K, the same form as F(x).

No, G5 =1+ x;+11 = 7 differs from ﬁ by the constant 1. Both functions have the same derivative
i( X )_(X+1)—X(l)_ 1 _i(—l)

dx \x+1/ — (x+ 1)? T ox+ 1?2 T dx \x+1/°

f'x) =¢x) = X = f(x) — g(x) = C for some constant C = the graphs differ by a vertical shift.

(x2+1)°
The global minimum value of % occurs at X = 2.
(a) The function is increasing on the intervals [—3, —2] and [1, 2].
(b) The function is decreasing on the intervals [—2, 0) and (0, 1].
(c) The local maximum values occur only at x = —2, and at x = 2; local minimum values occur at x = —3 and atx = 1
provided f is continuous at x = 0.

(@ t=0,6,12 (b) t=3,9 () 6<t<12 @ 0<t<612<t< 14

(a) t=4 (b) atno time ) 0<t<4 d 4<t<8
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23 24.
y y
150
3 4
8+ 2
3 -
3
_2 x
y=x"-7¢ 1
1_
1 1 1 1 1 y
1 1 1 1 1 X _ 1\2/ 3 4
-2 -10 1 2 4 6 /_1_
3 2
) y=x"=-3x"+3
o+

27. 28.

(6,432)

29. | 30.
T y=x— 323
1 NN N I I N T O
-3 9 18 27
——
(8.-4)
X
31. 32.
y y
2_
2k
1 y=x 4- 22 1k
L L L x t L L X
1 1 ) 3 -2 -1 1 2
AN
-1 y=x\3-x
2k
2k
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34. (a)

(b)

35. (a)

(b)

36. (a)

(b)
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y=16—x* = y = ———| +++ | ——— = the curve is rising on (—4, 4), falling on (—oco, —4) and (4, c0)
—4 4
= alocal maximum at x = 4 and a local minimum at x = —4;y”" = —=2x = y’ = +++ | ——— = the curve

is concave up on (—oo, 0), concave down on (0, c0) = a point of inflection at x = 0

x=4

Loc max

x=-4

V=x>-x-6=x-3)(x+2) = y =+++| —— | +++ = the curve is rising on (—oco, —2) and (3, c0),
-2 3

falling on (—2,3) = local maximum at x = —2 and a local minimum at x = 3;y” = 2x — 1

= y’=———| +++ = concave up on (3,00), concave down on (—o0, 3) = a point of inflection at x =

1
2
1/2

x=-2

y=6x(x+1)(x—2)=6x3—6x>—12x = y' = ———| +++ | ——— | +++ = the graph is rising on (-1, 0)
-1 0 2

and (2, 00), falling on (—oo, —1) and (0,2) = alocal maximum at x = 0, local minima at x = —1 and

y"=+++ | ——— | +++ = thecurveis concave up on (—oo, 1_3\ﬁ) and (]+3\ﬁ, oo) , concave down
1-/7 17
3 3
on (] _3\ﬁ, ]+3\ﬁ) = points of inflection at x = H[T\ﬁ

Loc max
_1-V7

y =x%(6 —4x) = 6x* —4x® = y' = +++ | +++ | ——— = the curve s rising on (—oo, 3), falling on (3, 00)
0 3/2
= alocal maximumatx = 3;y” = 12x — 12x* = 12x(1 —x) = y” = ——— | +++ | ——— = concave up on
0 1
(0, 1), concave down on (—o0, 0) and (1,00) = points of inflection at x = 0 and x = 1

x=3/2
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37. (a)

(b)

38. (a)

(b)
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y=xt-2x>=x*(x-2) = y =44+ | ———]|—-—— | +++ = thecurveisrising on (—oo,—\/E) and
-v2 0 Ve
(\/5, oo) , falling on (—\/5, \/E) = alocal maximum at x = —+/2 and a local minimum at x = \/5;
V=433 —dx =4x(x — D(x+1) = y'=———| +++ | ——— | +++ = concave up on (—1,0) and (1, 00),
-1 0 1

concave down on (—oo, —1) and (0, 1) = points of inflectionat x =0and x = £ 1

Loc max

Infl
x=1
Loc min

y =4 —x'=x*4—-x%) = y=———| 44+ | +++ | ——— = the curve is rising on (—2,0) and (0, 2),

-2 0 2
falling on (—o0o, —2) and (2,00) = a local maximum at x = 2, a local minimum at x = —2; y” = 8x — 4x3
=4x(2-x*) =y =+++| ———|+4+++ | ——— = concave up on (—oo,—\/E) and (0, ﬁ) , concave

-2 0 e
down on (—\/5, 0) and (\/5, oo) = points of inflection atx = 0and x = £ \/5

x=-2

39. The values of the first derivative indicate that the curve is rising on (0, co) and falling on (—oc0, 0). The slope of the curve

approaches —oco as x — 07, and approaches co as x — 0% and x — 1. The curve should therefore have a cusp and

local minimum at x = 0, and a vertical tangent at x = 1.
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40. The values of the first derivative indicate that the curve is rising on (0, 1) and (1, 00), and falling on (—oc0, 0)
and (%, 1) . The derivative changes from positive to negative at x = %, indicating a local maximum there. The

slope of the curve approaches —oco as x — 0~ and x — 17, and approaches coasx — 0" andasx — 1T,
indicating cusps and local minima at both x = 0 and x = 1.

y y
3 3
2 s :
. = -1/
y=§x1/3+%(x_1)131 |
y=xB 4 (x=1)23 ! x
-3 -2 -1 % 2 3

41. The values of the first derivative indicate that the curve is always rising. The slope of the curve approaches oo
asx — Oandasx — 1, indicating vertical tangents at both x = 0 and x = 1.

42. The graph of the first derivative indicates that the curve is rising on (0, %) and (%, oo) , falling

17-33 17+ . 17—/ ..
on (—o0,0) and (TSB, +1—633) = alocal maximum at x = — 33 alocal minimum at

X = % . The derivative approaches —oco as x — 0~ and x — 1, and approaches oo asx — 0%,
indicating a cusp and local minimum at x = 0 and a vertical tangent at x = 1.
y 4
3
3
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R 4 _ 2 _~5_ 10
43. yix—371+x—3 44. yix+572 x+5
y y
,
I, |
_x+1 _ 4 '
TS _l+x—3: H
5k ' 1 y=2
e e Uy e
| ! !
2r ' __s! __
--------- L i T=S T x+s
\l‘ 11 1 1 X 1
SIIN 234 6 !
. ?
3 :
:
2 2
_ x4+l 1 _ X =x+1 __ o 1
45, y === =x+1 46. y = 2 =x—1+:
y y
2 5
y=’\;1
4
el
2 f P
oy x
L o y=x P
1/' y=x—1 4~ y:)cz—x+l
Il 1 1 1 ram| 1 1 1 x X
4322 ﬂ

49_y:x2_—‘3‘:1_ 1 50. y = X =14+ 24

51. (a) Maximize f(x) = \/x — /36 — x = x!/2 — (36 — x)/? where 0 < x < 36
= f'x) = %x‘m - 536 — X)"V2(=1) = 27‘3\/6{\/%; = derivative fails to exist at 0 and 36; f(0) = —6,
and f(36) = 6 = the numbers are 0 and 36
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(b) Maximize g(x) = \/x + /36 —x = x/2+ (36 — x)!/2 where 0 < x < 36
1 v
= gdKx) = %X /2 4 %(36 x)"12(=1) = \[\/J = critical points at 0, 18 and 36; g(0) = 6,
g(18) =2+4/18 = 6\/5 and g(36) = 6 = the numbers are 18 and 18

. (a) Maximize f(x) = /x (20 — x) = 20x/? — x3/2 where 0 < x < 20 = f'(x) = 10x~1/2 — 3x!/?
= 2(;7\’/3" =0 = x=0andx = 230 are critical points; f(0) = f(20) = 0 and f(%o) =4/ ? (20 — ?)
_404/20

40
=33 = the numbers are 2 and

. _ . /2 / 2y/20—x— 1
(b) Maximize g(x) =x+ /20 —x=x+4+ (20 —x)/*where 0 < x <20 = g'(x) = Y, =0
= /20 —-x=13% = x = 2. The critical points are x = Z and x = 20. Since g (%) = &l and g(20) = 20,

the numbers must be 74—9 and % .

CAX =120 (27 —x%) for 0 < x < /27 y
= A'(x) =33 +x)3 —x)and A" (x) = —6x. y=27-x2
The critical points are —3 and 3, but —3 is not in the
domain. Since A”(3) = —18 < 0 and A (\/ﬁ) -0, — s

the maximum occurs at x = 3 = the largest area is
A(3) = 54 sq units.

. The volume is V = x*h =32 = h= 3. The
surface area is S(x) = x? + 4x (3) = x? + 12|
2x =4 (x> + 4x + 16)

X2

where x >0 = S'(x) =

= the critical points are 0 and 4, but 0 is not in the
domain. Now S”(4) =2 + 256 >0 = atx = 4 there
is a minimum. The dlmenswns 4 ft by 4 ft by 2 ft

minimize the surface area.

2
. From the diagram we have (%)2 +12 = (\/g)

=’ = ”T_hz . The volume of the cylinder is

V= mh = (1252 ) h = 7 (12— h?), where

T h/2
0 <h <24/3. Then V/(h) = 37 2 +h)2 — h) |

= the critical points are —2 and 2, but —2 is not in

the domain. Ath = 2 there is a maximum since
V" (2) = =37 < 0. The dimensions of the largest
cylinder are radius = \/E and height = 2.

. From the diagram we have x = radius and 4
y = height = 12 — 2x and V(x) = 2 7rx2(12 2x), where
0<x<6 = V(X =2mx(4 —x) and V" (4) = —8r. The
critical points are 0 and 4; V(0) = V(6) =0 = x =4
gives the maximum. Thus the values of r = 4 and

[

h = 4 yield the largest volume for the smaller cone.
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57. The proflt P=2px+py=2px+p (40 10") where p is the profit on grade B tires and 0 < x < 4. Thus
P'(x) = X)2 (x> — 10x +20) = the critical points are (5 — \/§>, 5, and (5 + \/_) , but only (5 — \/_) isin
the domain. Now P/(x) > 0 for 0 < x < (5 — \ﬁ) and P'(x) < 0O for (5 - ﬁ) <Xx<4 = atx = (5 - \/§> there

is a local maximum. Also P(0) = 8p, P (5 — \/g) =4p (5 — \/§) ~ 1lp,and P4) =8p = atx = (5 — \/g) there

is an absolute maximum. The maximum occurs when x = (5 — \ﬁ) andy =2 (5 — \/g) , the units are

hundreds of tires, i.e., x &= 276 tires and y ~ 553 tires.

58. (a) The distance between the particles is [f(t)| where f(t) = —cos t + cos(t + 7). Then, f'(t) = sint — sin(t + 7).
Solving f’(t) = 0 graphically, we obtain t &~ 1.178, t & 4.320, and so on.
2 £

(11 78097M—\
N
2

N[N

-1+

-2+

Alternatively, f'(t) = 0 may be solved analytically as follows. f'(t) = sin [(t +3) - %} — sin {( +

)+

= {sin(t—l— Z)cos T — cos(t+ Z)sin g} - {sm(t—i— Z)cos T + cos(t+ Z)sin g} —2sin Zcos(t + %)

OOI‘I
[—

oSl

so the critical points occur when cos(t 4+ %) = 0, or t = 3 + kar. At each of these values, f(t) = = cos 37
~ = 0.765 units, so the maximum distance between the particles is 0.765 units.
(b) Solving cos t = cos (t + %) graphically, we obtain t ~ 2.749, t =~ 5.890, and so on.

22

T

s 25

2
-1+
(2.7488936,0.9238795)

-2+

Alternatively, this problem can be solved analytically as follows.
cost=cos (t+ %)

cos{(t—k ) - —} = cos{(t—i— z) + %}
cos(t+ Z)cos T +sin(t+ Z)sin f = cos(t+ Z)cos & —sin(t+ %)sin &
2sin (t + %)Sin% =0
sin (t+ g) =0
= %T + km
The particles collide when t = %“ ~ 2.749. (plus multiples of 7 if they keep going.)

59. The dimensions will be x in. by 10 — 2x in. by 16 — 2x in., so V(x) = x(10 — 2x)(16 — 2x) = 4x® — 52x? + 160x for
0 < x < 5. Then V'(x) = 12x% — 104x + 160 = 4(x — 2)(3x — 20) , so the critical point in the correct domain is x = 2.
This critical point corresponds to the maximum possible volume because V’'(x) > 0 for 0 < x < 2 and V'(x) < 0 for

2 < x < 5. The box of largest volume has a height of 2 in. and a base measuring 6 in. by 12 in., and its volume is 144 in.3
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Graphical support:

160 } (2,144)
120 +
80 1
40 t
1 2 ; 4 é\‘
-40

The length of the ladder is d; + ds = 8 sec 8 + 6 csc §. We
wish to maximize I(#) = 8 sec 8 + 6 csc 6 = I'(0)
=8sechtand — 6¢cschcotd. ThenI'(9) =0

= 8sin®d —6cos®h = 0:>tan9—ﬁ

1
di =4\/4+ v/36and dy = v/361/4 + /36 : 3

= the length of the ladder is about

44 +/36) \/4+ /36 = 4+ /36 3/2z19.7ft.
(4 V/30) /4 V30 = (4 V30)

gx)=3x—x*+4 = g2)=2>0andg(3) = —14 < 0 = g(x) = 0 in the interval [2, 3] by the Intermediate

— x3 —
Mo tdixg=2 = x; =222 = x, = 2.196215, and

Bsace-d1
Gcsce-d2

Value Theorem. Then g'(x) =3 — 3x? = X,;; = X, —
so forth to x5 = 2.195823345.

gx) =x*—x3—-75 = g(3) = -21 <0and g4) = 117 > 0 = g(x) = 0in the interval [3, 4] by the Intermediate
xt—x3-75

X0 =3 = xi = 3.259259

Value Theorem. Then g'(x) = 4x® — 3x* = X, = X, — “z3 "3

= X9 = 3.229050, and so forth to x5 = 3.22857729.

f(x3+5x77)dx:’§74+5x_

f(Stg §+t>dt ¥ _fific=20-L+L+C

f(S\/EJr;%) dt:f(3t1/2+4t 2) dt—3(‘) +& pCc=202-44C

[ (55 -2) dt:f(%t‘1/2—3t_4)dt:%<%> S xyc= it htc

Letu=r+5 = du=dr

dr  _ - _u! _ - _ 1
f(r+5)2_fu2_fu fdu=t5+C=—u 1+C__(r+5)+c

Letu=r—+/2 = du=dr
f(réj;i)3:6f7_6fug—6fu—3du—6(%) +C=-3024+C=— (ri\g/i)z_'_c
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69. Letu=062+1 = du=20df = Ldu=6df

[30ver1d0= [ u(Gdu)=3 [u/2du=3 () +C=w24Cc=@2+1)"+cC

3
2

70. Letu=7+6* = du=20df = {du=06df
J A o= [ & () qu1/2du§<#)+Cu1/2+c\/7+92+c

71. Letu=1+x' = du=4xdx = 1du=x%dx

fxs(lJrX -1/4 dx = fu’1/4 _ifu1/4du_i(u3x«:) +C: Wi C= %( +X4)3/4+C

mm‘

72. Letu=2—-—x = du=—-dx = —du=dx
f(Z—x)3/5dX*fu3/5( duy=— [Wdu= -2 4C=-3u34C=-32-x¥ +C

(5)

73. Letu:l—so = du:%ds = 10du =ds

f8602 l—sods:f(sec:Qu)(lodu): 10fse<:2udu: 10tanu+C=10tan 15 +C

74. Letu=7s = du=7ds = 1du=ds

fcsc%rsds:f(csc u) (L du :%fcchUdu:—}Tcotu—i—C:—%cotws—l—C
1 _
%dufdﬂ
fcscﬁ@cotﬁ&dé):f(cscucotu)(%du) :%(—cscu)—i—C:—ﬁcsc\/E@—i-C

75. Letu = \/50 = du= \/Edﬂ =

76. Letu=§ = du=1d§ = 3du=df
fsecgtan dG—f(secutanu)(Sdu)—3secu+C—3sec3+C

71. Letu =3} = du:ldx = 4du=dx
fsinQde:f(sm u)(4du)*f4 Locos2) qu =2/ (1 —cos 2u) du =2 (u— 22) 4 C
:2u—sin2u—|—C—2(Z)—sm2()—|—C 3 —sinj+C

78. Letu =3 = du:%dx = 2du=4dx

cos? 2dx = | (cos?u)(2du) = [2 (12 2) qu= [ (1 +cos2u)du=u+ 2 4 C=% 4 Llgnx+C
f 2 2 2 2 2

79. y:f"2;51dx:f(1+x’2)dx:xfx’l+C:xf%JrC;y:flwhenx:1 = 1-1+C=-1
= C=-1=y=x—-1-1

3

80. y:f(x+%)2dx:f(x2+2+%)dx:f(x2+2+x’2)dx:%+2xfx’1+C:%3+2xf%+C;

1 X

y=1lwhenx=1= 142-14+C=1=C=-] = y=5+2x—-1-1

81 & = [ (15v/t+ 3 ) di= [ (15072 4 30712) di= 106/ 4 60/2 4 C; & = 8 when t = 1

= 10()*?+6()/?+C=8 = C=—8. Thus & =102+ 6t1/2 -8 = r= f (10632 + 6t1/2 — 8) dt
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=42 44632 —8t+C;r=0whent =1 = 4(1)"2 +4(1)*2 —8(1) + C, =0 = C; = 0. Therefore,
r =415/ 4 4632 — 8t
—sin't

%:f—costdt —sint+C;r ' =0whent=0 = —sin0+C=0 = C= OThus,dt,—

= %:ffsintdt:cost+cl;r =0Owhent=0= 14C; =0 = C, =—1. Thena:costfl
= r:f(cost—l)dt:sint—t+C2;r:—1whent:O = 0—-04Cy = —1= Cy = —1. Therefore,

r=sint—t—1

CHAPTER 4 ADDITIONAL AND ADVANCED EXERCISES

1.

If M and m are the maximum and minimum values, respectively, thenm < f(x) < M forallx e . fm =M
then f is constant on I.

3 6, —2< 0
No, the function f(x) = { 9XjX2’ 0 <_x X<<2 has an absolute minimum value of O at x = —2 and an absolute

maximum value of 9 at x = 0, but it is discontinuous at x = 0.

On an open interval the extreme values of a continuous function (if any) must occur at an interior critical
point. On a half-open interval the extreme values of a continuous function may be at a critical point or at the
closed endpoint. Extreme values occur only where f = 0, f does not exist, or at the endpoints of the interval.
Thus the extreme points will not be at the ends of an open interval.

The pattern f’ = +4++ | ———— | ———— | ++++ | +++ indicates a local maximum at x = 1 and a local
1 2 3 4

minimum at x = 3.

(@ Ify =6(x+ 1)(x —2)% theny < O0forx < —1 andy > 0 forx > —1. The sign pattern is

ff=——| +++ | ++4+ = fhasalocal minimum atx = —1. Alsoy” = 6(x —2)2 + 12(x + D)(x — 2)
-1

=6(x —2)(3x) = y’ >0forx <0orx >2,whiley” < 0for0 < x < 2. Therefore f has points of inflection
at x = 0 and x = 2. There is no local maximum.

(b) Ify =6x(x+ 1)(x —2),theny <Oforx < —land0 <x <2;y >0for —1 <x < 0andx > 2. The sign
sign patternis y' = ——— | +++ (|) ——— % +++. Therefore f has a local maximum at x = 0 and

local minima at x = —1 and x = 2. Also, y” = 18 [x — (I_T\ﬁ)} [x — (HT‘ﬁ)} ,s0y” < 0 for

- ‘/— <x < H"/_ and y” > 0 for all other x = f has points of inflection at x = lig‘ﬁ .

The Mean Value Theorem indicates that M = f’(c) < 2 for some ¢ in (0, 6). Then f(6) — f(0) < 12 indicates the

most that f can increase is 12.

If f is continuous on [a, ¢) and f'(x) < 0 on [a, ¢), then by the Mean Value Theorem for all x € [a, c) we have
1O-10 <0 = f(c)—f(x) <0 = f(x) f(c). Alsoiffis continuous on (c,b] and f'(x) 0 on (c,b], then for
all x € (c,b] we have =19 0 = f(x) —f(c) 0 = f(x) f(c). Therefore f(x) f(c) forall x € [a,b].

(@ Forallx, —-(x+1)? <0< (x—1D* = —(14+x}) <2x<(1+x%) = —§ < 25 < 5.
(b) There exists ¢ € (a,b) such that = = “bg:ga) = ‘t(b) fa) | — = |15=| < 3. from part (a)

= [f(b) — f()| < 3 |b—al.
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9. No. Corollary 1 requires that f’(x) = 0 for all x in some interval I, not f’(x) = 0 at a single point in L.

10. (a) h(x) = f(x)g(x) = h(x) = {'X)g(x) + f(x)g'(x) which changes signs at x = a since f'(x), g'(x) > 0 when
X < a, f’(x), g (x) < 0 when x > a and f(x), g(x) > O for all x. Therefore h(x) does have a local maximum at x = a.
(b) No, let f(x) = g(x) = x* which have points of inflection at x = 0, but h(x) = x° has no point of inflection
(it has a local minimum at x = 0).

.o _ _1+ _ _ . cen . _ . _ . .
11. From (ii), f(—1) = b_c+a2 =0 = a=1; from (iii), either 1 = XlgnC>C fx)orl = « Llrgoo f(x). In either case,
. N . x+1 - 1+f - - o . -
xllnimf(x) _xlln:goo T _xllim bxrorZ =1= b=0 andc = 1. Forifb =1, then
1 1 1
Ity > = 0andifc =0, then lim e — pm Ma

* = *oo. Thusa=1,b=0,andc = 1.

lim S =
Xx— +o00 Xt+c+2 — f+o00 bx+2 X — +o00

12. dy =3x>+2kx+3=0 = x = _Zkivg‘kz_% = x has only one value when 4k> =36 =0 = k> =9ork = +3.

13. The area of the AABC is A(x) = 1 (2) /1 —x% = 212, y
where 0 < x < 1. Thus A’(9) = —= = Oand ilare (xA1-32)c .
critical points. Also A (1) = 0so A(0) = 1 is the Xty =1
maximum. When x = 0 the AABC is isosceles since /<
AC = BC = /2. A B

14. lim M}ﬂ =f{"(c) = fore = 5 |f"(c)| > O there exists a§ > O such that 0 < |h| < §

1
h—0 2
= |HETO _gre)| < L[f"(c)] . Thenf'(c) =0 = —L|f"(c) < "¢ —£7(c) < L |f"(c)|
= f(c) — 5 |f"(0)| < @ < f"(c) + 5 [f"(0)] . If f”(c) < 0, then |f"(c)| = —f"(c)
= 31"(c) < B < L§"(c) < 0; likewise if f”(c) > 0, then 0 < £ f"(c) < EEH < 27(c).
(a) Iff’(c) < 0,then -6 <h <0 = f'(c+h)>0and0 <h< § = f’(c+h) < 0. Therefore, f(c) is a local
maximum.
(b) Iff”(c) > 0,then -6 <h <0 = f'(c+h)<0and0 <h < § = f'(c+h)> 0. Therefore, f(c) is a local
minimum.

15. The time it would take the water to hit the ground from height y is 4/ %y , where g is the acceleration of gravity. The

product of time and exit velocity (rate) yields the distance the water travels:

D(y) = /% /64(h — y) —s\f hy —y)/%,0<y<h = D(y) = —4\f hy —y?) *(h—2y) = 0, 2andh
1/2

are critical points. Now D(0) = 0, D =38 \[ ( % . % ) =4h,/= and D(h) = 0 = the best place to drill

the holeis aty = 5 .

16. From the figure in the text, tan (3 + 0) = b;lra; tan (8 + 0) = % ;and tan § = 2 . These equations
. b+a _ tan 5+ 2 __ htanf+ . . bh
give 22 = : g = hatn g - Solving for tan (3 gives tan § = 25 or

(h? — a(b + a)) tan 3 = bh. Differentiating both sides with respect to h gives
2htan B+ (h? +a(b+a)) sec? B 92 = b. Then & =0 = 2htan F=b = 2h(
= 2bh’> =bh®>+ab(b+a) = h?=a(b+a) = h=./a(a+Db).

h2 +a(b+a)) =b
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17. The surface area of the cylinder is S = 2712 4+ 27rh. From N
the diagram we have & = H=h = h = RH_H 454 =
S(r) = 27r(r+h) = 27r (r+ H—r &) T
=27 (1 — &)1’ + 2nHr, where 0 <r < R. H
Case I: H <R = S(r) is a quadratic equation containing h \
the origin and concave upward =- S(r) is maximum at =
r=R.

Case 2: H=R = S(r) is a linear equation containing the
origin with a positive slope = S(r) is maximum at
r=R.
Case 3: H > R = S(r) is a quadratic equation containing the origin and concave downward. Then

% :471'(1 —g)r—|—27rHand% =0 = 471'(1 —%)r—!—Zﬂ'H:O = r= %. For simplification

* RH
we letr* = H-R)

() fR<H<?2R,then0>H—-2R = H>2H-R) = r*=%
right endpoint R of the interval 0 < r < R because S(r) is an increasing function of r.

(b) If H = 2R, thenr* = ZZLRZ =R = S(r)is maximum atr = R.

() fH>2R,then2R+H<2H = H<2(H-R) = ﬁa = %<R = r* < R. Therefore,

. . ok RH
S(r) is amaximum atr = r* = MH-B)

> R. Therefore, the maximum occurs at the

Conclusion: If H € (0, 2R], then the maximum surface area is atr = R. If H € (2R, c0), then the maximum is at
ok RH
r=r1"= 535 -
18. f(x) =mx — 1+ % = f'(x)=m— xiz and "' (x) = % >0whenx > 0. Thenf'(x) =0 = x = ﬁ yields a minimum.

If f (ﬁ) 0,then /m—1+4+/m=2/m—1 0 = m 1. Thusthe smallest acceptable value for mis 1.

19. (a) The profit function is P(x) = (c —ex)x — (a+bx) = —ex’ + (c —b)x —a. P/(x) = —2ex+c—b =0
c—b
2

=X = %. P’(x) = —2e < 0ife > 0 so that the profit function is maximized at x =

(b) The price therefore that corresponds to a production level yeilding a maximum profit is

Pl ., =c¢— e(522) = <2 dollars.

2e

T 2

c

—b)2 — —b)?

Zeb) + (C _b)(%) —a= <C4e) —a

(d) The tax increases cost to the new profit function is F(x) = (c —ex)x — (a+bx + tx) = —ex’> + (c — b —t)x — a.
Now F'(x) = —2ex + ¢ — b — t = 0 when x = “-—¢ = ¢=P=! Since F"(x) = —2e < 0if e > 0, F is maximized

—2e 2
units per week. Thus the price per unitis p = ¢ — e(<=2=!) = <2+

5 dollars if units are priced to maximize profit.

(c) The weekly profit at this production level is P(x) = —e(

c—b—t

36 dollars. Thus, such a tax

when x =

ct+b+t _ c4+b __
2 2

increases the cost per unit by

20. (a)

The x-intercept occurs when % —-3=0= % =3=x= %
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: 3
(b) By Newton's method, X1 = X, — fr,(&"‘)). Here f'(x,) = —x,2 = ;—} SO Xpt1 = Xp — 0~ =X, + (i — 3) x2

= Xp + Xp — 3x2 = 2x, — 3x2 = X, (2 — 3xy).

f(x0) Xg—a qxg —xg+a xg(q—1) +a 1 a 1
21. Xy = X9 — 7% = X9 — = = =Xo| = =5 so that x; is a weighted average of x
1 0~ Flxo) 07 I P P ol )t T 1 g g 0

a : : -1
and o with weights my = qT and m; =

N=n

—1 a 1 a q—1 1 a
In the case where x; = -2; we have Xq —aandx; = A (== + =) =—=|—+ =) = —.
0 x371 0 1 xg*1 q =1 \q x871 q q ng1

22. We have that (x — h)? + (y —h)? = 2 and 50 2(x — h) + 2(y —h)% = 0 and 2 + 2% + 2(y — )&} = 0 hold.

+ydx

Thus 2x + 2y & — oh + 2h dy , by the former. Solving for h, we obtain h = Tro . Substituting this into the second

L dy
equation yields 2 + 2 -+ 2y <x1-:—y(;‘y‘> = 0. Dividing by 2 results in 1 + y <’::_—y$> =0.
dx dx
23. (a) a(t) =s"(t) = =k (k> 0) = §'(t) = —kt + Cy, where §'(0) = 88 = C; = 88 = §/(t) = —kt + 88. So
s(t) = =5 + 88t + C, where s(0) = 0 = C, = 050 5(t) = = + 88t. Now s(t) = 100 when
%tz + 88t = 100. Solving for t we obtain t = 33 V85— 200k VSEQ_QOUK. At such t we want §'(t) = 0, thus
_k(w) +88=0or —k(%_i 852_200]() + 88 = 0. In either case we obtain 887 — 200k = 0

38>
so that k = 500 & 38.72 ft/sec?.

(b) The initial condition that s'(0) = 44 ft/sec implies that s'(t) = —kt + 44 and s(t) = ’kt + 44t where k is as above.
The car is stopped at a time t such that s'(t) = —kt+ 44 =0 =t = %. At this time the car has traveled a distance

s(3) = (¢ ) +44(4) = 48— 98 _ 968(200) = 25 feet. Thus halving the initial velocity quarters

stopping distance.

24. (X) £2(x) + g2 (x) = h'(x) = 2f(x)f'(x) + 2g(x)g'(x) = 2[f(x g(x)g'(x)] = 2[f(x)g(x) + g(x)(—f(x))]
= 2.0 = 0. Thus h(x) = c, a constant. Since h(0 ) 5,h(x) = 5for allxm the domain of h. Thus h(10) = 5.

25. Yes. The curve y = x satisfies all three conditions since d = 1 everywhere, when x = 0,y = 0, and ¥ =0 everywhere.

dx~

26. y =3x>+2forallx =>y=x>+2x+Cwhere —1=1342-1+C=C=-4=>y=x>+2x—4.

27. ") =a=-C=>v=5(1) = _7‘3 + C. We seek vy = §'(0) = C. We know that s(t*) = b for some t* and s is at a
maximum for this t*. Since s(t) = i + Ct+ k and s(0) = 0 we have that s(t) = ’1—121 + Ctand also §/(t*) = 0 so that
¢ = (30)"7% 50 FEIL | c(30)% = b= (30)/3(C - %) = b= (30)"/3(5) = b = 31CH3 = 1
=C= (4b§3/ . Thus vo = §'(0) = (4b3 = 2\/_b?’/4

28. (a) §"(t) =t1/2 — V2 = v(t) = §'(t) = 2632 — 2t/2 + k where v(0) =k = # = v(t) = 2¢/2 — 2t1/2 4 &
(b) s(t) = £°/2 — 362 + 3t 4+ ko where s(0) =k = — . Thus s(t) = £26°2 — 3632 4 21— L

29. The graph of f(x) = ax? 4+ bx + ¢ with a > 0 is a parabola opening upwards. Thus f(x) 0 for all x if f(x) = 0 for at most

. . . =2bE4/(2b)* -4
one real value of x. The solutions to f(x) = 0 are, by the quadratic equation #

(2b)* — 4ac < 0 = b? —ac < 0.

. Thus we require
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Clearly f(x) = (a;x + by)® + ... + (axx + b,)?> 0 for all x. Expanding we see
f(x) = (alx? + 2a;b1x + b?) + ... + (a2x® + 2a,b,x + b?)
=(al+al+...+a)x> +2(ab; +asby + ... +asby)x+ (b7 +b3+ ... +b2) 0.
Thus (a;b; + asby + ... +ayby)* — (a2 + a2 4 ... +a2)(b? + b2 + ...+ b?) < 0 by Exercise 29.
Thus (ajby + ashy + ... +a,by)* < (a2 + a2 +... +a2)(b? + b3 + ... +b2).
Referring to Exercise 29: It is clear that f(x) = 0 for some real x <> b*> — 4ac = 0, by quadratic formula.
Now notice that this implies that
f(x) = (a1x +b1)* + ... + (apx + by)?
=(@+al+...+a)x> +2(ab; +asby + ... +azby)x+ (b2 +bi+ ... +b3) =0
& (aiby +ashy 4 ... +agby)® — (@ +ai ... +ad)(BI+ b3+ ... +b2) =0
& (atby +ashy 4 ... +agby)’ = (a2 +ai+...+ad) (b2 + b+ ... +b2)
Butnow f(x) =0< ax+b;=0foralli=1,2, ..., neax=—-b;=0foralli=1,2, ..., n

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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NOTES
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CHAPTER 5 INTEGRATION

5.1 AREA AND ESTIMATING WITH FINITE SUMS

1. f(x) = x? Since f is increasing on [0, 1], we use left endpoints to obtain
lower sums and right endpoints to obtain upper sums.
Y
A
1 L
+ > X
1
1
. » . i\2 2
(a) Ax = % = % and x; = iAx = 3 éalowersumlsZ(é) . % = % 0% 4+ (%) ) = %

i=0 (
; i V211
and x; = iAx = ; = alower sum is Z(Z) 1=
i=0
. 2,
and x; = i/Ax = 3 = an upper sum is Z(%) . (
i=1
. 4,
and x; = i/Ax = 7 = an upper sum is Z(i) . (
i=1

~~
(=3
p—
ol
I
—
,;‘|
1
PN,

~~
o
N
bel
Il
—
w‘|
Il
Lo
Lol
Il
O
—~
Lol
S~—
o
+
—
o
N—
Il
wlen

~
o
—~
ol
I
—
|
I
Ll
Bl

2. f(x) =x* Since f is increasing on [0, 1], we use left endpoints to obtain
lower sums and right endpoints to obtain upper sums.
y
A
1 L
+ X
1
. 1.
(@) Ax=15%=landx = iAx =1 = alowersumis > (1)"- 1 = %(03 + (%)3) = i
i=0
. i S in3
(b) Ax=170= % and x; = iAx = & = alower sumis > ()" - 1= %(03+ (%)3+ (%)3+ (%)3) = % =2

i=0
2
_ . i . i3
(c) AX:%:%andxizlﬁx:§:>anuppersumls'zl(§) .
i=
. 4 .
(d) Ax:—l’o:—andxi:iAx:i:>anuppersumis2(i)3~

i=1

DO
Il
e

/N N
—~
DO
~—

w
+
—_
w
~——
Il
—
w0l
I
Gle

=
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3. f(x)=1 Since f is decreasing on [1, 5], we use left endpoints to obtain
upper sums and right endpoints to obtain lower sums.
Y
A
1+
+ + X
i 2 3 4 5
(a) Ax = 5;1 =2andx; =1 +iAx = 1—|—21:>alowe1rsum152:1 2 —2(%4—%) = %
i=
4
(b) Ax:5%41:1andxi:1+iAx:1+i§alowersum1 Zl = ( —i—%—l—i—i—é) = %

1
(c) Ax =51 —2andxl—1+1Ax—1Jr21:>anuppersum152:1 2:2(1+%) :%
1:0l

3
(d) A){z%l—landxlf1—|—1Ax—1—1—1§anuppersum1sz1 1:1(14—%4—%—1—%):%
1:0‘

4, f(x) =4—x2 Since f is increasing on [—2, 0] and decreasing on [0, 2], we use

left endpoints on [—2, 0] and right endpoints on [0, 2] to obtain
Y lower sums and use right endpoints on [—2, 0] and left endpoints
on [0, 2] to obtain upper sums.

L4 + + 4 x
-2

() Ax=22 —2andx; = —2+iAx = —2+2i = alowersumis 2- (4 — (=2)°) +2- (4 —2%) =0
1 4

0 Ax=2"2 —landx; = —2 +iAx = —2+1i = alowersumis 3 (4 — (xi)?) - 1+ 2 (4 — (xi)?) - 1
i=0 i=3

=1((4—(-2)+(A- (D) +(A-1)+(4-2%)) =6
© Ox=2"2 —2andx; = —2 +iAx = —2 + 2i = aupper sumis 2 - (4 — (0)*) +2- (4 —0%) = 16

2
2 3
@ Ax=2"2 —tlandx; = —2+iAx = —2 +1i= aupper sumis 3 (4 — (x;)?) - 1+ > (4 — (x0)?) - 1
i=1 i=2
=1((4 - (1)) +(@4-0)+ (@A -0+ (4-19)) =14
5. f(x) =x* Using 2 rectangles = Ax = 150 =1 = 1(f(3) +(2))
2 2
; SORSODEE
1

1) +1(2) + é))
YHE Q)+ (DY) =1

Using 4 rectangles = Ax =
= 3 ((
=57

e

N[ R
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f(x) = x3 Using 2 rectangles = Ax = 150 = 1 = L(f(3) +£(3))
3 3
, =1+ @) =i =4
1
Using 4 rectangles = AXx = TO = i
= 1 (f(5) +1(5) +1(R) +1(3))
_ ;(13+33+53+73) = 96 — 12 _ 3L
4 & I8 T8 T 18
> X
1 1
2

fx) = !

Using 2 rectangles = Ax = 251 = 2 = 2(f(2) + f(4))
y 1,1 3
] =2(3+1) =3
Using 4 rectangles = AXx = 52 =1
= 1(f(3) +1(3) +1(3) +1(2))
1§+ EE+ D) = o — o =
+ > X
1 2 3 4 5
f(x) =4 —x Using 2 rectangles = Ax = 2_;_2> =2=2(f(-1) +1(1))

=2(33+3) =12

Using 4 rectangles = Ax = 222 — 1

= L(f(=3) +(=3) +1(3) +1(3)
(

(a) D~

(b)

(a)

(b)

(a) D~

(b) D

(a)

(b)

|
N
N ¢

0)(1) 4+ (12)(1) + 22)(1) + (10)(1) + (5)(1) 4+ (13)(1) + (1 1)(1) + (6)(1) 4+ (2)(1) 4 (6)(1) = 87 inches
D ~ (12)(1) + (22)(1) + (10)(1) + (5)(1) + (13)(1) + (1 1)(1) + (6)(1) + (2)(1) + (6)(1) + (0)(1) = 87 inches

D =~ (1)(300) + (1.2)(300) + (1.7)(300) + (2.0)(300) + (1.8)(300) + (1.6)(300) + (1.4)(300) + (1.2)(300)
4+ (1.0)(300) + (1.8)(300) + (1.5)(300) + (1.2)(300) = 5220 meters (NOTE: 5 minutes = 300 seconds)

D ~ (1.2)(300) + (1.7)(300) + (2.0)(300) + (1.8)(300) + (1.6)(300) + (1.4)(300) + (1.2)(300) + (1.0)(300)
+ (1.8)(300) + (1.5)(300) + (1.2)(300) + (0)(300) = 4920 meters (NOTE: 5 minutes = 300 seconds)

(0)(10) + (44)(10) + (15)(10) + (35)(10) + (30)(10) + (44)(10) + (35)(10) + (15)(10) + (22)(10)
+ (35)(10) + (44)(10) + (30)(10) = 3490 feet ~ 0.66 miles

~ (44)(10) + (15)(10) + (35)(10) + (30)(10) + (44)(10) + (35)(10) + (15)(10) + (22)(10) + (35)(10)
+ (44)(10) + (30)(10) + (35)(10) = 3840 feet &~ 0.73 miles

The distance traveled will be the area under the curve. We will use the approximate velocities at the
midpoints of each time interval to approximate this area using rectangles. Thus,

~ (20)(0.001) 4 (50)(0.001) + (72)(0.001) + (90)(0.001) + (102)(0.001) + (112)(0.001) + (120)(0.001)
-+ (128)(0.001) + (134)(0.001) + (139)(0.001) ~ 0.967 miles
Roughly, after 0.0063 hours, the car would have gone 0.484 miles, where 0.0060 hours = 22.7 sec. At22.7
sec, the velocity was approximately 120 mi/hr.
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13.

14.

15.

16.

17.

18.
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(a) Because the acceleration is decreasing, an upper estimate is obtained using left end-points in summing

acceleration - At. Thus, At = 1 and speed ~ [32.00 + 19.41 + 11.77 4+ 7.14 4+ 4.33](1) = 74.65 ft/sec
(b) Using right end-points we obtain a lower estimate: speed ~ [19.41 + 11.77 + 7.14 + 4.33 + 2.63](1)

= 45.28 ft/sec
(c) Upper estimates for the speed at each second are:
t | 0 1 2 3 4 5

v | 0 32.00 5141 63.18 7032 74.65
Thus, the distance fallen when t = 3 seconds is s &~ [32.00 + 51.41 + 63.18](1) = 146.59 ft.

(a) The speed is a decreasing function of time = right end-points give an lower estimate for the height (distance)
attained. Also
t | 0 1 2 3 4 5
v | 400 368 336 304 272 240
gives the time-velocity table by subtracting the constant g = 32 from the speed at each time increment
At = 1 sec. Thus, the speed = 240 ft/sec after 5 seconds.
(b) A lower estimate for height attained is h ~ [368 + 336 + 304 4 272 4 240](1) = 1520 ft.

Partition [0, 2] into the four subintervals [0, 0.5], [0.5, 1], [1, 1.5], and [1.5,2]. The midpoints of these
subintervals are m; = 0.25, my = 0.75, mg = 1.25, and my = 1.75. The heights of the four approximating

rectangles are f(m;) = (0.25)° = 2, f(my) = (0.75)* = 2, f(m;) = (1.25)* = 122, and f(my) = (1.75)* = 3%
Notice that the average value is approximated by 3 {(i)?’ (3) + (%)3 (3) + (%)3 (3) + (%)3 (%)] =3
1 approximate area under

= GO curve f(x) = x° ] . We use this observation in solving the next several exercises.

Partition [1, 9] into the four subintervals [1, 3], [3, 5], [5, 7], and [7,9]. The midpoints of these subintervals are
m; =2, my =4, mg = 6, and my = 8. The heights of the four approximating rectangles are f(m;) = %,
f(my) = }—P f(mg) = %, and f(my) = % The width of each rectangle is Ax = 2. Thus,

25
Area%2(%)+2(%)+2(%) +2(%) = % = average value ~ Mgn?r%: %: %.

Partition [0, 2] into the four subintervals [0, 0.5], [0.5, 1], [1, 1.5], and [1.5,2]. The midpoints of the subintervals
are m; = 0.25, my = 0.75, m3 = 1.25, and my = 1.75. The heights of the four approximating rectangles are

2
f(ml):%—i—sin?g:%+%:l,f(mg):%—i—sinQ%”:%—i—%:l,f(mg):%+sin2%“:%+(—%)

2
=i+l=1andf(m)=14+sin?F =14 (— ﬁ) = 1. The width of each rectangle is Ax = 5. Thus,
Areax (1+1+14+1D(3) =2 = averagevaluezlengtﬁ'%:%: 1.

Partition [0, 4] into the four subintervals [0, 1], [1,2,], [2, 3], and [3,4]. The midpoints of the subintervals

3 5 7

arem; = &, my = 5,m3 = 3, and my = 5. The heights of the four approximating rectangles are

92

2
f(my) =1 — (cos (Wg%)))4 — 1 — (cos ()" = 0.27145 (to 5 decimal places),

5

ftmo) = 1 (eos ()" = 1~ (cos (3))" = 097855, ftms) = 1 — (eos ()" = 1~ (cos ()’

8
4
=0.97855, and f(my) = 1 — (cos (WE‘%) ) =1— (cos (%”))4 = 0.27145. The width of each rectangle is
Ax = 1. Thus, Area ~ (0.27145)(1) + (0.97855)(1) + (0.97855)(1) + (0.27145)(1) = 2.5 = average
value v &€ — 23 — 3
™ lengthof [0,4] — 4 ~— 8-
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19. Since the leakage is increasing, an upper estimate uses right endpoints and a lower estimate uses left

endpoints:

(a)

(b)

(©)

upper estimate = (70)(1) + (97)(1) + (136)(1) 4+ (190)(1) + (265)(1) = 758 gal,
lower estimate = (50)(1) + (70)(1) 4+ (97)(1) 4+ (136)(1) + (190)(1) = 543 gal.
upper estimate = (70 + 97 + 136 + 190 + 265 + 369 + 516 + 720) = 2363 gal,
lower estimate = (50 4+ 70 + 97 + 136 + 190 + 265 + 369 + 516) = 1693 gal.
worst case: 2363 + 720t = 25,000 = t ~ 31.4 hrs;

best case: 1693 + 720t = 25,000 = t ~ 32.4 hrs

20. Since the pollutant release increases over time, an upper estimate uses right endpoints and a lower estimate

uses left endpoints:

(a)

(b)

21. (a)
(b)

(c)

(d)

22. (a)

(b)
()

23-26.

upper estimate = (0.2)(30) + (0.25)(30) + (0.27)(30) + (0.34)(30) + (0.45)(30) + (0.52)(30) = 60.9 tons
lower estimate = (0.05)(30) + (0.2)(30) + (0.25)(30) + (0.27)(30) + (0.34)(30) + (0.45)(30) = 46.8 tons
Using the lower (best case) estimate: 46.8 + (0.52)(30) + (0.63)(30) + (0.70)(30) + (0.81)(30) = 126.6 tons,
so near the end of September 125 tons of pollutants will have been released.

2
The diagonal of the square has length 2, so the side length is \/5 Area = (\/5) =2

Think of the octagon as a collection of 16 right triangles with a hypotenuse of length 1 and an acute angle measuring

2r _ w

6= 8
Area = 16(3) (sin £) (cos Z) =4 sin T = 2/2 ~ 2.828

Think of the 16-gon as a collection of 32 right triangles with a hypotenuse of length 1 and an acute angle measuring

2r _ w

32 16"

Area = 32(%) (sin %) (cos %) = 8 sin g =2v/2~ 3.061

Each area is less than the area of the circle, 7. As n increases, the area approaches 7.

Each of the isosceles triangles is made up of two right triangles having hypotenuse 1 and an acute angle measuring

2r _ «® - 7 i —9(Y(qin & ) — 1 2z
2T — I The area of each isosceles triangle is At = 2(3) (sin Z) (cos Z) = % sin 2.

s 2w
. . . s =
,s0lim & sin 2% = lim T =

n—oo n—oo n

2
n

The area of the polygon is Ap = nAr = 3 sin

Multiply each area by r?.
_ 1240 21
At = sI-sin <
__n.2.. 21
Ap = orsin =
lim Ap = 712

n—oo

Example CAS commands:

Maple:

with( Student[Calculus1] );
f :=x ->sin(x);
a:=0;
b :=Pj;
plot( f(x), x=a..b, title="#23(a) (Section 5.1)" );
N :=[ 100, 200, 1000 ]; # (b)
for nin N do
Xlist := [ a+1.*(b-a)/n*i $ i=0..n ];
Ylist := map( f, Xlist );
end do:
for nin N do #(c)
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Avg[n] := evalf(add(y,y=Ylist)/nops(Ylist));

end do;

avg := FunctionAverage( f(x), x=a..b, output=value );

evalf( avg );

FunctionAverage(f(x),x=a..b,output=plot);  # (d)

fsolve( f(x)=avg, x=0.5);

fsolve( f(x)=avg, x=2.5);

fsolve( f(x)=Avg[1000], x=0.5 );

fsolve( f(x)=Avg[1000], x=2.5);
Mathematica: (assigned function and values for a and b may vary):
Symbols for m, — , powers, roots, fractions, etc. are available in Palettes (under File).
Never insert a space between the name of a function and its argument.

Clear[x]

flx_]:=x Sin[1/x]

{a,b}={n/4, 7}

Plot[f[x],{x, a, b}]
The following code computes the value of the function for each interval midpoint and then finds the average. Each
sequence of commands for a different value of n (number of subdivisions) should be placed in a separate cell.

n=100; dx = (b — a) /n;

values = Table[N[f[x]], {x, a + dx/2, b, dx}]

average=Sum[values|[[i]],{i, 1, Length[values]}] / n

n =200; dx = (b — a) /n;

values = Table[N[f[x]],{x, a + dx/2, b, dx }]

average=Sum[values[[i]],{i, 1, Length[values]}] / n

n =1000; dx = (b — a) /n;

values = Table[N[f[x]],{x, a + dx/2, b, dx}]

average=Sum|[values][[i]],{i, 1, Length[values]}] /n

FindRoot[f[x] == average,{Xx, a}]

5.2 SIGMA NOTATION AND LIMITS OF FINITE SUMS

6k 6()
kr1 = 1+ +

=

6(2
+1

H
N
L

[\Sife)

+5=7

—_
[SS]

=~
1l

3
-1 _ 1-1 2-1 3—-1 __ 1 2 _ 1
2 Y = bt e =04 t5=5

~

=

4
3. > coskmr =cos(1m) 4+ cos(2m) + cos(3m) +cos(@m) =—-1+1—-14+1=0

k=1

5
4. > sinkm = sin (1) + sin 27) + sin 37) + sin(47) +sin(51) =04+0+0+0+0=0

k=1

3
M ST ST T \/5_ \/572
5. g (=D'sin T = (=D"sin T4+ (—=D* M sin  + (=1 sin§ =0— 1+ ¥ = Y5

6. 24: (=¥ cos kmr = (—=1)! cos (17) 4+ (—=1)% cos (2m) + (—=1)3 cos (37) + (—1)* cos (4)

=—(-D+1-(-D+1=4
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11.

14.

17.

(a)
(b)

(©)

(a)

(b)

(©

()

(b)

(©

(a)

(b)
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6
St =2t 402t 4 03t 4 ot 4 05 4 00T — 1 42 4448416432

k=1

S =20 42l 402 403 42 405 = 1 4244484 16432
k=0
4
k=-1

All of them represent 1 +2 +4 +8 4 16 4 32

6
S22 = ()T (2P (2 () A (2 (-2 =1 244 -84+ 1632
k=1

5
SO(=1)F2F = (—1)020 4 (—1)12! + (= 1)222 4+ (—1)P2% + (= 1)* 24 + (1) =1 -2+ 4 — 8+ 16 — 32
k=0

3

z (_l)k+12k+2 — (_1)—2+12—2+2 + (_1)—1+12—1+2 + (_1)0+120+2 + (_1)1+121+2 + (_1)2+122+2

k=-2
+(=1)3H12342 = 1 42 -4+ 816 +32;
(a) and (b) represent 1 — 2 + 4 — 8 4+ 16 — 32; (c) is not equivalent to the other two

4
(=D (=D*! (=n3*! =n*=t 1 1
Z -1 = 2-1 t 3o T o __1+§_§
k=2
2
(G2 A G b ! (=1 _ 1 1
g k+1 — 0+1 + 1+1 Jr2+1 =l-5+3
1
(=D _ (=D7! (=1° =nt 1 1
kz:l k+2 — 71+2+0+2+ 1+2 __1+§_§

(a) and (c) are equivalent; (b) is not equivalent to the other two.

i(kf1)2:(171)2+(271)2+(371)2+(471)2:O+1+4+9

kA =IO+ D+ A+ HCHD G D=0+ 1+44+9+16

fj k2 =(=32+(-22+(-1)*=9+4+1

(a) and (c) are equivalent to each other; (b) is not equivalent to the other two.

6 4 4
Sk 12. k2 13. 3 &
k=1 k=1 k=1
5 5 5
32k 15. 3 (=D L 16. > (—1)* &
k=1 k=1 k=1
(@ > 3a, =3 a =3(-5)=-15
k=1 k=1

(b)
()
(d)

(e)

n

Y E=iYybh=t6) =1
k=1 k=1

S@+b)=Ya+d) b=-5+6=1
k=1 k=1 k=1

S —-b)=>a->b=-5-6=-11
k=1 k=1 k=1

S (b —2a) =3 b — 23 a, = 6 — 2(—5) = 16
k=1 k=1

k=1
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18. (a) z 8a, =8 z a, =8(0) =0 (1) 3 250b, = 250 3" b, = 250(1) = 250
k=1 k=1
© Z(ak+1)_zak+21_o+n_n @ S h—D=3b->1=1-n
k=1 k=1 k=1 k=1
10 1010+ 1) 10 10(10 + 1)(2(10) + 1)
19. (@ Y k=30 =55 (b) Y k? = HEEUAED — 385

k=1

10 2
(© >k = [105ED] 7 — 552 — 3025

k=1

13 13
20. (a) Zk:%:Q] (b) Zkzzwzglg
k=1 k
& 3 13(13+ 1) 2 2
(© LK = [BE0]" — 012 = 8281

k=1

7 7 X )
21 = 2 k= 2 () = 56 SID S I Y €
- = k=1 k=1
23 32 (3-K) = 03— 3K = 3(6) — SOELRO LD _ g3
k=1 k=1 = 6
6 6 6
2.5 (K= 5) = K - 355 = CHOED - 5(6) = 61

=~
I

o~
I

5 5
25. Zk(3k+5):2(3k2+5k)—321(2—1—521( (W)H(W) — 240

1 k=1

7 7 7 7
26. S kQk+ D= 22 +k) =23 K+ k=2 (7”*”(62(7””) + 102D =308
k=1

k=1 k=1 k=1
k=1 k=1

5 3 3 5 5 3 3
27. 9 £+ (2 k) S (2 k) s (50)" 4 (350 = 3376

k=1 k=1

7 2 7 7 2 7 2 2
28. (Zk) -3 k{:(kzlk) —%21&:(@) —§<7—(7;”) — 588

7 500
29. (@) S.3=3(7)=21 (b) 3.7 =7(500) = 3500
k=1 k=1
264 262
(© Letj=k—2=k=j+2;ifk=3=j=1landifk=264=j=262= > 10= > 10 = 10(262) = 2620
k=3 j=1

36 28 28 28
30. (@) Letj=k-8=k=j+8ifk=9=j=1landifk=36=j=28= 5 k= (j+8) = 3 j+ 3.8
k=9 j=1 j=1 i=
— BB 4 8(28) = 630
17 15
() Letj=k—2=k=j+2ifk=3=j=landifk=17=j=15= S kK> = > (j+2)°
k=3 j=1
15
=3 (PH4+4) = ZJ+Z4J+ 24 HSHIEEI 4 BUEY 4 4(15)
j=1

= 1240 + 480 4 60 = 1780
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71
(© Letj=k—17=k=j+17;ifk=18=j=landifk=71 = j=54 = S k(k— 1)

k=3
54 54 54 54 54
=S GHINGH1T) - 1) = X (P +33j+272) = Y2+ 233+ Y272
= j=1 =1 j=1 j=1
— MENEEH LY | 33, MEIED | 977 (54) = 53955 + 49005 + 14688 = 117648
31 (@) 3 4=dn ) S c=cn
k=1 k=1
© Y (k—1)=Yk->1="000_pn=sn
k=1 k=1 k=1
32. @ Y (1+2n) = (L +2n)n=1+2n? (b) Y ¢=%n=c
k=1 k=1

n
k _ 1nmn+1) _ n+tl
© Yw=w—2 ="n

k=1
33. (a) ) ©
y y y
3 2,3) 2.3
3b & 3k - 3+ @3
fo=x>-1, J@=x>-1, fw=22-1,
0<x<2 | 0<x<2 | 0<x<2 '
Left-hand ' Right-hand 1 Midpoint '
2 ! 2F i 2+ .
i 1 ]
i ] !
: ) |
4 e !
- 1 - { 1+ ]
] 1 |
] 1 i
| i :
| H X I ) X 1 B
=0 L‘Iz 63‘|= leg 2 0 ¢ =1 ¢35 ¢4=2 0f ¢ ET,Z GG
/. / :
—1 = -1 -1
34. (a) (b) ()
y y y
1+ 1+ 1k
025 05 075 1 025 05 075 1 025 05 075 1
f)=—x? () = 2 N
| ab w==? L W= ~N
35. (a) ) ©
y y
fx)=sinx, S0 =sinx, f(x) =sinx,
—m<x<m —m<x<T —m<x<T
Left-hand Right-hand ) — Midpoint 1
'/-‘\ o -m2o AT
- | x : } ’ x | | | I p L x
¢y =-m ¢y - \j/c2=() c3 cy=m T
i
---- -1
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36. (a) (b) ©

T

SIE]

Sf(x)=sinx+1

X

-

oS

T

fx)=sinx+1

X

B fx)=sinx+1

37. [x1 — Xo| = |12 = 0] = 1.2, [xo — x1| = |1.5 — 1.2] = 0.3, |x3 — Xo| = [2.3 — 1.5| = 0.8, |x4 — x3| = [2.6 — 2.3| = 0.3,
and |x; — x4| = |3 — 2.6] = 0.4; the largest is ||P|| = 1.2.

38. [x1 — Xo| = |—1.6 — (=2)] = 0.4, [x5 — x| = |—0.5 — (—1.6)| = 1.1, [x3 — xo| = [0 — (—0.5)] = 0.5,

|X4 — X3| = |08 — 0| =

39. f(x) =1 —x?

Y
A
1le

40. f(x) = Let Ax = 320 = 3 and ¢; = i/Ax = 2. The right-hand sum is
: San(f)= £33 S ol o ety
s L
51 Thus, lim Z6l-f—hm9“ 290 — Jim (9 + 2) = 0.
sl n—oo —1 n—oo n—oo
3 L
2+
1+
1 2
41. f(x) =x>+1 Let Ax = 220 = 3 and ¢; = iAx = 2. The right-hand sum is
y S(e+Di= y((E)+1)2=2 3 (% +1)
i=1 i=1 i=1
10 n
. _ %Zl2+ 3.0 = %(n(nJrl%(QnJrl)) +3
i=1
6 >
4 :Wﬁ-i’)—m—l—i’) Thus,
n
2 lim 3>(c? +1)2 = lim (1“ o +3) —9+3=12
, i n—o00
1 2

Let Ax = 1

n

= lim <1 —

2 1—

—

= Land ¢
n

Thus,

5 — X4| = |1 — 0.8] = 0.2; the largest is ||P|| = 1.1.

>(1-(2)7)

i=1

nn+1)(2n+1)
6n?

n

n—oo i=1

2_%_‘_1%2 flili
6 - 3

2

3

n
eI

—1— 203 +3n%+n

6n3

lim >°(1 - )}
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42. f(x) = 3x* Let Ax = 129 = L and ¢; = iAx = L. The right-hand sum is

n n . n
v ;3@(%) = ;3(%)2(%) =3 ;iz _ ;(M)

1 n? 6
31 3 2 2+34+ 4 L
=2 Edn — Z 2 w2 Thus, lim ) 3c?(1)
27 N=00 =1
. 2+3+ 4
=lim | =3 ) =2=1.
| i (242) -
+ X
1
43. f(x) = x+x* =x(1+x) Let Ax = 2=% = L and ¢; = iAx = 1. The right-hand sum is

n

/(i i)2 o >
v Sleite)y =2 (5 + (1)) = Rui+ pyi

i=1 i=1
2+
_ 1 (nn+1) 1 (nm+1)2n4+1)\ _ n24 2n3 + 3n2 +
_F( 2 )""F( 6 >_n2n2n+n6ng :
1+1 243+ % . u
11 = % + === Thus, thg Zl(ci +c)t
iz
. 141 2+3+ 4 1,2_5
:1 n — 0 n° = = z ==,
e x nl,rgo[(2)+( 6 >] 2 t6 =%
1
44. f(x) = 3x + 2x? Let Ax = 120 = L and ¢; = iAx = L. The right-hand sum is
n n . 9 n_ n_
y (e +2e)k = (T 42(8)) = Axi+ Ay
\ i=1 i=1 i=1 i=1
571 2 2
N = () G () = g e
37 3+2 243+ &
; =3t L 2T Thys, nll»I?o 2(3014—20?)%
I iz
1 . 3+% 2+§+“L2 3 9 13
s —pm | () ¢ () <pe g
1
45. f(x) = 2x3 Let Ax = 120 = L and ¢; = iAx = L. The right-hand sum is
Y N 53y L S (i)3) 1 25ms 2 ()’
A > (2c)); = Z(Z(;) )H =gl = F(T)
i=1 i=1 i=1
21 _ o424 1) _ mdi2ngl _ Lti+
- 4n* - 2n? - 2
Thus, lim 3°(2¢3)L — fim | ZFar | — 1
1+ ’ n—oo i=1 i/n _HHOO 2 T2
—>» x
1
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46. f(x) = x> —x° Let Ax = 071(:1) =land¢=-1+iAx=—1+ 1. Theright-
y n n . .
A hand sumis > (c? — ¢})i :Z((—l—i—ﬁ)z— (—1—|—ﬁ)3)%
27 i=1 i=1
= —ﬁ+4—‘§—%)l:i(2—5—i+ﬁ—%)
= n n n® /n = n n n? n
" =32 AViH Ay - AP
i=1 i=1 i=1 i=1
2
1 D(2n+1 1
' . :g(n)_%(n<n;>)+%<%)_$(%)
-1
5 642 241 n
-2 _ 5n2—r&1-5 + 4112—::-n62n+2 _ n2+42nl;+1 =2 _ S;n 4+n3+n2 _ 1+“4+ 22 Thus, HILHJC Zl(clg . C?)%
. 543 44545 142+ 5 41 7
:nlll]&{z_2 S ]:2_2"’_3_4:12'

5.3 THE DEFINITE INTEGRAL

2 0

1. fo dx 2. 2x3 dx
0 -1
41 s 1

4, . L dx 5. ) — dx

5

3. (x? — 3x) dx

1
6. j; V4 —x2 dx

0
7. fﬂ/rl(sec x) dx

/4
8. fo (tan x) dx

2 1 5
9. (a) f2 gx)dx =0 (b) ﬁ) g(x)dx = — f1 g(x)dx = —8
2 2 5 5 2
©) f1 3f(x) dx = 3f1 f(x)dx =3(—4)=—12 (d) j; f(x) dx = f1 f(x) dx — fl fx)dx=6—-(—4) =10
5 5 5
(e) fl [f(x) — gx)]dx = fl f(x) dx — fl gx)dx=6—-8=-2
5 5 5
®) fl [4fx) —g(x)]dx =4 fl f(x) dx — fl g(x)dx =4(6) -8 =16
9 9
10. (a) fl —2f(x)dx = -2 j; fx)dx = -2(—-1)=2

9 9 9
(b) f7 [f(x) + h(x)] dx = j; f(x) dx + f7 hx)dx=54+4=9
9 9 9
f7 [2f(x) — 3h(x)] dx = 2 f7 f(x)dx — 3 j; h(x) dx =2(5) —34) = -2
1 9
(d) fg f(x) dx = — fl fx)dx =—(-1) =1

(©)

7 9 9

(e) flf(x)dx:f; f(x)dx—f7 fx)dx=—-1—-5=-6
7 9 9 9

) f9 [h(x) — f(x)] dx = f7 [f(x) —hx)] dx = j; f(x) dx — j; hx)dx=5—-4=1
2 2 2 2

11. (a) fl f(u) du = f1 f(x)dx = 5 (b) f1 V3f@z)dz =/3 f1 f(z) dz = 5/3

1 2 2 2

(©) j; f(t) dt = — fl f(t) dt = -5 (d) f1 [—fx)] dx = — f1 f(x)dx = =5
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-3 0 0 0
2@ [ swa=- [ soa=-2 ® [ swa= [ a0a=y2
© [Lreora=—[Lawa=—2 @ [ ma-t [ awa= (L) (v2)=1

4 4 3
13. (a) J;f(z)dZ:fof(z)dz_j;J f(z)dz=7—-3=4
3 4
(b) Lf(t) dt = — f3 f(t) dt = —4

3 3 1
14. (a) flh(r)dr:f_lh(r)dr—f_l h(r)dc=6-0=6

1 3 3
(b) —f3h(u)du——(—f1 h(u)du> :fl h(u) du =6

15. The area of the trapezoid is A = % (B+Db)h J f(x) = —% +3
4
—15+20 =21 = [ (3+3) ‘
= 21 square units ) B
b 1
-2 -1 T s
1 1 |
{ h 1
16. The area of the trapezoid is A = % (B +b)h 3y f(x) = —2x + 4
3/2
1 _ _
=;6+DH()=2 = f1/2 (=2x +4) dx
= 2 square units B
B
1
b
=5 0,5 1 1,5 2.
17. The area of the semicircle is A = § 7r* = £ 7(3)?
3
= %71' = j:g V9 —x2dx = %7‘(‘ square units
-3 -2 -1
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18. The graph of the quarter circle is A = } 7r? = 1 7(4)?

0
=47 = f_4 16 — x2 dx = 4 square units

19. The area of the triangle on the left is A =  bh = 3 (2)(2) 2V
= 2. The area of the triangle on the right is A = % bh
= 1 (1)(1) = 1. Then, the total area is 2.5 f(x) = x|
1
= f_2 |x| dx = 2.5 square units !
X
-2 =1 1
20. The area of the triangle is A = bh = 1 (2)(1) = 1 y
1
= f (I — |x|) dx = 1 square unit
-1 f(x) =1—|x|
X
-1 1
21. The area of the triangular peak is A = % bh = % 2)(1)=1. 5
The area of the rectangular base is S = fw = (2)(1) = 2. f(x) = 2 - x|
1
Then the total area is 3 = f _1(2 — |x]) dx = 3 square units
= 1x

2. y=14+V/1-x2 =>y—-1=v1-x2
= y-1)?=1-x>= x>+ (y—1)? = 1, acircle with 1) =1+V 1-x*
center (0,1) and radius of 1 = y =1+ /1 —x2is the
upper semicircle. The area of this semicircle is
A = $m? = L a(1)? = 5. The area of the rectangular base
is A = (w = (2)(1) = 2. Then the total area is 2 + §

[+5)

1
= f71 (1 +'1 —x2) dx = 2 + § square units
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b ) b
23. ), 5dx= 1o® =1 24, fo 4x dx = 1 b(4b) = 2b*
! x lb( y=4x
: o~
b
x
b b
25. f 2sds = 1 b(2b) — § a(2a) = b* — a’ 26. f 3tdt = 1b3b) — 1 a3a) = 3 (b —a?)
a a
y y
2b y=2s 3b y=21
- 3a
é
a b ° 1
a b
2 . ) 2 . )
27. (a) f_2 4—x2dx=1[n(2)7] =2n (b) fo 4—x2dx =12 =7

28. (a) f_()l(3x+M) dx:f_olsxderf_O1 I—x2dx=—1[()3)] + 1 [r(1)}] =2 -2
(b) f_ol(Ser\/lfo) dx:f_013xdx+fol”jxdx+f_l1 1fx2dx:—%[(1)(3)]+%[

—
—
=
—
(N
S—
=
+
Nl
—
3
—
—
=
(v}
A
Il
STE

29. flﬁx dx = (@2 —Wr_1 30. fjjx dx = & _ 05 _ 3

s [Toap= g ooy 3. f;ﬁrdr: Wf)z _ (@2 — 24
33. fowﬁ dx = (‘3/;)3 =1 34. fOO'SSQ ds = 2 = 0.009

35. fol/zﬁ dt = % =4 36. Oﬁ/i)e? =1«

37. Jjaxdx:@—aézg 38. j:/gaxdx:(\/ga)z—%:e@
39. fo%ﬁ dx = (if):i =1 40. f;bﬂ dx = G — 9p?
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1 2 )
2? 0?
41. j;7dx:7(1—3):—14 42. j;) 5xdx:5‘j;)xdx:5|:7_7:|:]()

43, j:(Zt—Z%)dt:Zflltdt—fo23dt:2{%2—%2] —32-0)=4—6=-2

)

44. foﬁ (t—ﬁ) dtZLﬁtdt—ﬁ)ﬁﬁdt: l(@ _02] —ﬁ{ﬁ—o} Sl

1 1 1 1 2 ) )
45.f2(1+§)dz:f2 1dz+f2§dz:f2 1dz—%f; zdz:l[l—z]—%[%—ﬂ:— 1) =-

ENEN

4

)}

. LO(2Z—3)dz:j;ozzdz—L03dz:—2foszdz—ﬁo3dz:—2[§—°§]—3[0—3]:—9+9:0

e flwans ] fura [Tota) <3([3-4] - [y -4]) =3[3 - 4] =2 0) =7

4

J

o]

1 1 1 1/2 sy (0
43, 1/224u2du:24f1/2 u2du:24[f0 - [ u2du] :24[%—27] =24 =7
2 2 2 2 . .
9. [ G ax-s)a=3 [ axt [Cxa- [Tsa=3[2 ¢4 [Z %) sp-o=@+2)-10=0

50. flo (3)(2+x75)dx:fj;1 (3X2+x5)dx—[3]:)1x2dx+j:xdxj:5dx]
=-[p(5-%5)+(5-5)-s0-0]=-(G-9 =1

51. Let Ax = 2=0 — E and let xg = 0, x; = AX,

n

2
X9 = 2AX,... X, = (n — DAX, X, = nAx = b. 2 y (b,3b )
Let the c,'s be the right end-points of the subintervals 8
= ¢} = X1, C2 = Xy, and so on. The rectangles
defined have areas: f(x) = ay>

f(c;) Ax = f(Ax) Ax = 3(Ax)? Ax = 3(Ax)?

f(cy) Ax = f2AX) Ax = 3(2Ax)? Ax = 3(2)%(Ax)?

f(c3) Ax = f(3AX) Ax = 3(3Ax)? Ax = 3(3)%(Ax)?

f(cy) Ax = f(nAX) Ax = 3(nAx)? Ax = 3(n)?(Ax)?
Then'S, = 3 f(co) Ax = 3 3k2(Ax)?

. ! %=0 X Xy X, X, b

_ . a3\ (n(+DEn+1)
=340 Y K =3 (—) (76 )

b
b® 3 1 . b3 3 1
=5 Q+i+5) = ), ¥ dx= lim 52+ 7+ 5) =D’
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52. Let Ax = 220 = bandlet xg = 0, x; = Ax,

53.

54.

Xo = 2AX%,... ,X,_; = (n — DAX, X, =nAx =b (b,nbz)

Let the ¢, 's be the right end-points of the subintervals

'th2
= C1 = X1, C9 = X9, and so on. The rectangles
defined have areas:

f(c1) Ax = f(Ax) Ax = 1(Ax)? Ax = T(Ax)?

f(cy) Ax = f(2Ax) Ax = 1(2AX)? Ax = 7(2)%(Ax)?

f(c3) Ax = fBAx) Ax = 71(3Ax)? Ax = m(3)%(Ax)?

f(x) = ¢

f(c,;) Ax = f(nAx) Ax = 7(nAx)? Ax = m(n)3(Ax)?
Then'S, = 3 fc) Ax = 3 mk2(Ax)?

k=1 k=1 X

y i X, =b
k=1

1

b
3 . 3 3
:L'g (2+%+n%)éj;7rx2dx:nhm Lg (2+%+$):L§.

Let Ax = 2=9 — b andlet xg = 0, x; = Ax,
n n

y
Xo = 2AX,... ,X,_; = (n — 1AX, X, = nAx = b. 2b
Let the c,'s be the right end-points of the subintervals
= ¢] = X1, C3 = Xy, and so on. The rectangles
defined have areas: f(x) = 2x
f(c) Ax = f(Ax) Ax = 2(AX)(AX) = 2(Ax)?
f(co) Ax = f2AX) Ax = 2(2AX)(Ax) = 2(2)(Ax)?
f(c3) Ax = f(3AX) Ax = 2(3AX)(AX) = 2(3)(Ax)?
f(cy) Ax = f(nAX) Ax = 2(nAX)(AX) = 2(n)(Ax)?
Then S, = 3" ) Ax = 3" 2k(Ax)?
k=1 k=1
. X
=2Ax2 Y k:2(b—§) (n(n;rl)) X%=0 X, X X, X, =b
k=1 .

b
—b2(141) = [ 2xdu= lim_ b7 (14 1) = b2

Let Ax = % :Eandletxozo,xl = AX,

Xg = 2AX,... , X, = (n — 1)AX, x, = nAx = b. .‘22+1

X
Let the c,'s be the right end-points of the subintervals f(x) = Y +1

= C1 = X1, C9 = X9, and so on. The rectangles /
defined have areas:

f(c1) Ax = f(Ax) Ax = (5 + 1) (Ax) = L (Ax)? + Ax
f(co) Ax = f(2Ax) Ax = (2* + 1) (Ax) = $(2)(Ax)* + Ax A R, X
(35X 1) (Ax) = L 3)(Ax)? + Ax

f(cg) Ax = f(BAx) Ax =

f(cr;) Ax = f(nAx) Ax = (2% + 1) (Ax) = L ()(Ax)? + Ax
Then S, = Z f(c,) Ax = Z (AKX +Ax) = 1A 3 k+Ax 3 1 =5 (5) (252) + (2) )

I (1+ ) +0 :>f Jdx= lim (3b*(1+ 1) +b)=3b>+b

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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3
59. av(f) = (335) j; (t— 1) dt

1 32 2 s 1 s

=1(%)-3(%- 02)+ (3—0)—1

UPLOADED BY AHMAD JUNDI

ZY
y=X2—1
al
B2
-1
1, Y

y=3x2—3

y=(t—1)2

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



60. av(®) = (1) f_: (2 — 1) dt

1 1
_ 1 2 1
=1 _Qtdt—gf_2tdt

61. (a) av(g) = (ﬁ) f_ll (x| = 1) dx

0 1
:%f_l (—x—l)dx+%f0(x71)dx

0 . 0 ) 1 ! 1
f,ﬂ‘dx_if,l ldx—I—ifoxdx—ngldx

[V}

3 3
(b) av(g):(3+l)f1 (|x|—1)dx:§f1 (x — 1) dx

3 3
_ 1 1 _ 1 (3 12 1
=1.

3
© avie = (5-1) S (x = 1) ax
1 3
—t [ axl = ax+t [ (-1 ax

= % (-1+2)= % (see parts (a) and (b) above).

62. @ av(h) = (5—i7;) f_ol—\x| dx:f_ol—(—x)dx

0 02 _ (=1?
:filxdx:gf 5 = —

b=

Copyright © 2010 Pearson Education, Inc.
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y
16

y=t2-t s
4
3
2
1

2 1.5 1 05 1\t

y
1 g =Ix-1

a 4 .

(0_2_ Q}f) —%(o—<—1))+%(§—‘;—2) ~la-o) —«—4—<7—4—'-x
| -1

1

y=[x-1

X

1 y=k-1

h(x) =—Ix]

Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI

276  Chapter 5 Integration

63.

64.

65.

66.

1 1
(b) av(h) = (—O)j; — x| dx:—f0 x dx y
=-(3-%)=-1 T heo=-
L1
— X
-1 < 1
1-1
1
(c) av(h) = (ﬁ) f71 — |x] dx y

0 1 L 3
(Lo [ wax) I -

=1(=4+(—3)) =— 4 (see parts (a) and (b) 1

above). X
-1 1 1
: T-1 :

Consider the partition P that subdivides the interval [a, b] into n subintervals of width Ax = b‘

endpoint of each subinterval. So the partition is P = {a a+ b 2 a+ ( 8, ,a+ =Y } andcy = a+ ( 8,
We get the Riemann sum Zf(ck)Ax: Zc- boa _ cb-ajgng _ clbo a) n:c(b—a).Asn—> ocoand |P|| — 0
k=1 k=1 k=1

b
this expression remains c(b — a). Thus, j; cdx =c(b —a).

Consider the partition P that subdivides the interval [0, 2] into n subintervals of width Ax = 2=% = 2 and let ¢y be the

right endpoint of each subinterval. So the partition is P = {0, ﬁ, 2. 2 S % =2}andckx = k- % = % We get the
Riemann sum " f(cp)Ax = 3 [2(%) + 1] 2=k =8y k42y1=%. “(";1) +2.n= —4(“:” +2.
k=1 k=1 k=1 k=1 k=1

2
Asn — oo and ||P|| — 0 the expression ( U 4 2 has the value 4 + 2 = 6. Thus, j;) (2x+ 1) dx = 6.

Consider the partition P that subdivides the interval [a, b] into n subintervals of width Ax = 'ﬂ and let ¢y be the right

endpoint of each subinterval. So the partition is P = {a, a + b 2 a+ M ,a+ =Y } andcy = a+ ( 2,

n 2 2
We get the Riemann sum Zf(ck)Ax = Zcﬁ(b;a) = b;a <a—|— T_a)> = ?Z (a2  2kloa) K(b—a) )
k=1

n n?

n3

(Za b a) Ek+ b a EkQ) — b-a +2a(b a)’ _n(n2+1) + (b—a)® .n(n+l)6(2n+1)

1 3, 1
= (b—a)a? +a(b—a)’- nbly (b a> : (nH)n(anH) = (b—a)a? +a(b—a)’- HTE + (bza)g . L“j ol

Asn — oo and ||P|| — O this expression has value (b — a)a® + a(b — a)2 1+ @ -2

b
=ba? — a® + ab? — 2a’b + a® + 1(b® — 3b%a + 3ba® — a’) = %3 — & Thus, f x2dx = %3 — %—3
Consider the partition P that subdivides the interval [—1, 0] into n subintervals of width Ax = O_r(l_') = - and let ¢k be
the right endpoint of each subinterval. So the partitionis P = {—1, —1 + =142, ..,—1+n- % =0} and

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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n n
ok = —1+k-1=—14% We get the Riemann sum ) f(ci ) Ax = Y <(71 +5 - (-1+ k)2) -

k=1 k=1
S E 1R (1)) = ks R = e e g e
k=1

=243 rUEED Agn — 0o and ||P|| — O this expression has value —2 + 3 — 1 = —3. Thus,

273
0
fil(x —x¥)dx = —2.

==

67. Consider the partition P that subdivides the interval [—1, 2] into n subintervals of width Ax =2 _1(1_1) == and let ¢k be
the right endpoint of each subinterval. So the partitionis P = {—1, —1 + 2 —-142-2,..,—-1+n % =2} and
ck = —1+k-2 =—1+ 3 We get the Riemann sum Zf(ck)Ax =3 (3(—1 + 3n—k) —2(-1+ %)+ 1) 3
k=1 k=1
1 2 1 1 n(n+1 n(n+1)(2n+1
:%E(_ISk ae g ek oy ):TSZ k;“ Zkz 8.4, (2+)+§1_§.(+)6(+)
=18 - 3 nH) + 27("+§I)1§2"+1>. Asn — oo and ||P|| — O this expression has value 18 — 36 + 27 = 9. Thus,

2
f71(3x2 —2x+ 1)dx =9.

68. Consider the partition P that subdivides the interval [—1, 1] into n subintervals of width Ax = % =z and let ¢k be
the right endpoint of each subinterval. So the partitionis P = {—1, —1 + %, 142 %, coo—14+n % = 1} and
ok = —1+k-2=—1+ 2 We get the Riemann sum }_f(c)Ax = > ¢} (3) =2 Y (-1 + %)
k=1 k=1 k=1

(s o) 2 eSi- BEe s+ 1 50)
k=1 k=1 k=1 k=1
2

k=1

2
SR T . L) . LESVCAESVINS (%) —246. 0l 4. (Dt 4y (0D
=-2+4+6- ”’ 4-2+ +"2—1—4 ik +"2 .Asn — oo and ||P|| — O this expression has value =2+ 6 — 8 + 4 = 0.

1
Thus, f_]x3dx =0.

69. Consider the partition P that subdivides the interval [a, b] into n subintervals of width Ax = 22

(b a) .’a_i_@:b}and
n kb—a))>
ck= a+ ( 3) WegettheRlemannsume(ck)Ax—ch(b boa) — ;a (a+ %)
- k=1

n
( 3a k: a) T 3ak2(:2—a) n k'(bn;a) ) _ %(233 4 3a2(27a)2k+ 3a(bn;a)zzk2 n (b—a)®
k=1 k=1 k=1

endpoint of each subinterval. So the partition is P = {a, a + 2=* b i a+

M:

n3

k3>
1

k

o

_ b;a nad 4 3@ <lr>12—a>2 ) n(n2+1> + 3a(b—a>3 RLUESCLEST <b;4a>“ ) (n(n;l))

3a?(b—a)” —a 2n+1 b—a)* n+1)>
— (b— a)® 4 Ho a1y aboa) penens) | boa' nr)
41 L 4 241 . .
:(b—a)a3+w(+#- b 4 (b R ~2+1+ 2 (o) -1+"1+““.Asn—>ooand |P|| — O this expression has value
. b
(b—a)33+3a2(+_a)z+a(b—a)g—l-(b;af—bf—— Thus, f KCdx =& — &,

70. Consider the partition P that subdivides the interval [0, 1] into n subintervals of width Ax = % = % and let ¢y be the
right endpoint of each subinterval. So the partition is P = {0, 0 + %, 0+4+2- %, c.,04n-1= 1}andex =0+k- % =

n
n n n n n

We get the Riemann sum > f(ci) Ax = 3 (3cx —¢f) (1) =1 3 (3 K (%)3) = %(% Yk— & Zk3>
k=1 k=1 k=1 k=1 k=1

=l

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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71.

72.

73.

74.

75.

76.

77.

78.

79.

UPLOADED BY AHMAD JUNDI
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2 2 1
1 1 1 141 1+2+4
—%%—#(%) =3-m g __%.T"_All'il . Asn — oo and ||P|| — 0 this expression

1
has value 3 — + = 3. Thus, fo (3x — x¥)dx = 3.

Tofind wherex — x> 0O,letx—x>=0 = x(1 —-x)=0=>x=0o0orx=1. f0<x< 1,then0<x—x>= a=0
and b = 1 maximize the integral.

To find where x* — 2x2 < 0,letx! —2x2 =0 = x>(x2—2) =0 = x =0orx = + /2. By the sign graph,

++++++(\)[——8——\9_+++++++,wecanseethatx4—2x2§00n {—ﬁ, \/5} = a=—+2andb= 2
-2 2

minimize the integral.

f(x) = 15z is decreasing on [0, 1] = maximum value of f occurs at 0 = max f = f(0) = 1; minimum value of f occurs
at 1 = minf = f(1) = 1+] = = . Therefore, (1 — 0)min f < f e dx< (I —-0)maxf= % < f 1+X2 dx <1.
That is, an upper bound = 1 and a lower bound = 5 .

See Exercise 73 above. On [0,0.5], max f = l+02 =1, minf = W = 0.8. Therefore

(0.5 —=0)min f < j; f(x)dx < (0.5 —0)max f = < f()5]+X2 dx < % On [0.5,1], max f = 1+(05)’ = 0.8 and
min f = 1+112 = 0.5. Therefore (1 — 0.5)min f < f 1+x2 dx < (1—-05maxf = % < j;)ls e dx < 2

Sle

0.5 1 1
1 2 1 1 1 2 13 1
Thenz+§§fo T X+ j;)_ler—dexgi_'_g = %Sfomdxﬁ

1
—1 <sin(x?) < 1forallx = (1—0)(— 1)<fsm dx<(1—0)(1)orf sinx?dx <1 = smx dx cannot
equal 2.

f(x) = v/x + 8 is increasing on [0,1] = max f=f(1) = /1 + 8 = 3 and min f = f(0) = \/0+8:2\/§.

1 1
Therefore,(l—O)minf§j;\/x—l—deS(l—O)maxf:> 2\/53](.) X+ 8 dx < 3.

b
Iff(x) Oonla,b],thenminf Oandmaxf Oon[a,b]. Now, (b —a)minf < j; f(x) dx < (b — a) max f.

b
Thenb a =b—a 0 = (b—a)minf O:>j;f(x)dx 0.

b
If f(x) < 0 on [a, b], then min f < 0 and max f < 0. Now, (b —a)min f < j; f(x) dx < (b — a)max f. Then

b
b a=b—-a 0:>(b—a)maxf§0:>j;f(x)dx§0.

1 1 1
sinx <xforx 0= sinx—x <0forx 0:>f(sinx—x)dx§O(seeExercise78):>fosinxdx—j;)xdxgo

1
:>fs1nxdx<fxdx = fsmxdx<(2 02) éﬁsinxdxﬁ%.Thusanupperboundis%~

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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83.

84.
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N 1
secx 1+ "72 on (—%,%) = secx — (1 + "5) Oon(—3,%) = fo {secx— (1 + ";)} dx 0 (see Exercise 77)
. ' o o 1 1 o 1 1 o
since [0, 1] is contained in (— 5, %) :>fosecxdxfj; (1+7) dx Oéj;secxdx j;) (1+5)
1 1 1 1 1
1 2 _ 11 f 7
éﬁ)secxdx L/;ldx+2];)( dx:>f0secxdx (1 0)+2(3):> 0secxdx ¢~ Thus a lower bound

is Z
18 ¢.

b b b
Yes, for the following reasons: av(f) = bia j; f(x) dx is a constant K. Thus j; av(f) dx = fa Kdx = K(b—a)

b b b
:>j;av(f)dx:(b—a)K:(b—a)-b%aj;f(x)dx:j;f(x)dx.

All three rules hold. The reasons: On any interval [a, b] on which f and g are integrable, we have:

(@ av(f+g) =1 fab[f(x) + g(x)] dx = {fabf(x) dx + J;bg(x) dx] = biafabf(x) dx + biaj;bg(x) dx
= av(f) + av(g)

(b) av(kf) = b—ia j;bkf(x) dx = bia {k j;bf(x) dx] =k [ﬁ j;bf(x) dx] = k av(f)

b b b
(c) av(f) = bia fa f(x) dx < bia j; g(x) dx since f(x) < g(x) on [a, b], and ﬁ j; g(x) dx = av(g).
Therefore, av(f) < av(g).

(a) U = max; Ax + maxy AX + ... + max, Ax where max; = f(x;), max, = f(x3), ... , max, = f(x,) since f is
increasing on [a, b]; L = min; Ax + miny Ax + ... 4+ min, Ax where min; = f(x(), miny = f(x1), ...,
min, = f(x,_,) since f is increasing on [a, b]. Therefore
U — L = (max; — min;) AX + (maxs — ming) AX + ... + (max, — min,) Ax
= (f(x1) — f(x0)) Ax + (f(x2) — f(x1)Ax + ... + (f(x,) — f(x,-1)) Ax = (f(x,) — {(x0)) Ax = (f(b) — f(a)) Ax.
(b) U = max; Ax; + maxs Axs + ... 4+ max, Ax, where max; = f(x;), maxy = f(x5), ... , max, = f(x,) since f
is increasing on[a, b]; L = min; Ax; + miny Axy + ... + min, Ax, where
min; = f(Xg), ming = f(x1),... , min, = f(x,_,) since f is increasing on [a, b]. Therefore
U — L = (max; — miny) Ax; + (maxs — ming) Axs + ... + (max, — min,) Ax,
= (f(x1) — f(x0)) Axy + (f(x2) — f(x1)Ax2 + ... + (f(x,) — f(x,1)) Ax,
< (f(x1) — £(X0)) AXppax + (f(x2) — 1(x1)) AXppax + -+ + (£(X,) — £(X,-1)) AXppoy . Then
U — L < (f(x,) — f(X0)) AXpox = (f(b) — f(a)) AXppo = [f(b) — f(a)| AX, since f(b)  f(a). Thus

lim (U-—-L)= Ilim (f(b) —f(a)) AXmx = 0, since Ax,., = [|P||.
[P]| —0 [Pl — 0 1Pl

(a) U = max; Ax + maxy AX + ... + max, Ax where
max; = f(Xg), maxy = f(x1), ... , max, = f(x,_,)
since f is decreasing on [a, b];

L = min; AX + miny Ax + ... + min, Ax where
min; = f(xy), miny, = f(x), ..., min, = f(x,)
since f is decreasing on [a, b]. Therefore

U — L = (max; — minj) AX + (maxs — ming) Ax
+ ... 4+ (max, — min,) Ax

= (f(xo) — f(x1)) Ax + (f(x1) — f(x2))Ax T
+ o+ ({(x) — f(x0) Ax = (f(x,) — f(x,)) Ax

— (f(a) — f(b)) Ax.

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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(b) U = max; Ax; + maxs Axs + ... + max, Ax, where max; = f(Xg), maxo = f(xy), ... , max, = f(x,_;) since
f is decreasing on[a, b]; L = min; Ax; + miny Axs + ... 4+ min, Ax, where
min; = f(x1), ming = f(xs),... , min, = f(x,) since f is decreasing on [a, b]. Therefore
U — L = (max; — miny) Ax; + (maxy — mins) Axs + ... + (max, — min,) AXx,
= (f(xo) — f(x1)) Axy + (f(x1) — f(x2))Axz2 + ... + (f(x,1) — {(x,)) Ax,
< (f(x0) — (X)) AXppax = (f(@) — f(b) AXppox = |f(b) — f(a)| AX, since f(b) < f(a). Thus

lim (U-L)= Ilim [|f(b)— f(a)|] AXmx = 0, since Ax,., = ||P||.
[P — 0O [P]l —0 | | 1Pl

85. (a) Partition [0, %] into n subintervals, each of length Ax = an with points xg = 0, x; = Ax,

X9 = 2AX,...,X, = nAx = g Since sin X is increasing on [O z

’2
of the circumscribed rectangles of areas f(x;) Ax = (sin Ax)Ax, f(x2) Ax = (sin 2Ax) Ax, ... , f(x,) Ax

] , the upper sum U is the sum of the areas

Ax 1
- . . . o A% _cos((n+1) A
= (sin nAx) Ax. Then U = (sin Ax + sin 2AXx + ... + sin nAx) Ax = [cos 2 ;(:1(1 (Anx 2) A%) AX
2
| cos & —cos((n+13) &) oy _ m(cos g —cos (§+7))  cos g —cos (5+7)
- 2sin - (%) - 4n sin 7- - (hiﬂrﬂ)
="
/2 s T ™ -
. . . S o~ —COS (5 + 1= 1—cos T
(b) The area is f sinxdx = lim 24 _.Coql(l ) _ locos§ 1.
0 n— 00 (smjn) 1
In

n
86. (a) The area of the shaded region is Y  Ax; - m; which is equal to L.
i=1

(b) The area of the shaded region is Y Ax; - M; which is equal to U.
i=1
(c) The area of the shaded region is the difference in the areas of the shaded regions shown in the second part of the figure
and the first part of the figure. Thus this area is U — L.

87. By Exercise 86, U — L = > Ax; - Mj — Y Ax; - m; where M; = max{f(x) on the ith subinterval} and

i=1 i=1
m; = min{f(x) on the ith subinterval}. Thus U — L = > " (M; — m;)Ax; < > e - Ax; provided Ax; < ¢ for each
i=1 i=1
n n
i=1,...,n. Since Y e - Ax; =€ > Ax; = €(b — a) the result, U — L < ¢(b — a) follows.
i=1 i=1
88. The car drove the first 150 miles in 5 hours and the
second 150 miles in 3 hours, which means it drove 300 Vﬁ:ﬁch',"
miles in 8 hours, for an average of 32—0 mi/hr so1 —_—
= 37.5 mi/hr. In terms of average values of functions,
. . Verage _ 37.s mimr
the function whose average value we seek is value :
30, 0<t<5 . 301
v(t) = {50’ 5-1<8 and the average value is
BOE)+GOG) _ 37 5
8 5.
t Time
S 8 hr
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89-94. Example CAS commands:
Maple:
with( plots );
with( Student[Calculus1] );

f:=x->1-x;
a:=0;
b:=1;

N :=[ 4, 10, 20,50 1];
P := [seq( RiemannSum( f(x), x=a..b, partition=n, method=random, output=plot ), n=N )]:
display( P, insequence=true );

95-98. Example CAS commands:

Maple:
with( Student[Calculus1] );

f :=x -> sin(x);

a:=0;

b :=Pi;

plot( f(x), x=a..b, title="#95(a) (Section 5.3)" );

N :=[ 100, 200, 1000 ; # (b)

fornin N do
Xlist := [ a+1.*(b-a)/n*i $ i=0..n ];
Ylist := map( f, Xlist );

end do:

for nin N do #(c)
Avg[n] := evalf(add(y,y=Ylist)/nops(Ylist));

end do;

avg := FunctionAverage( f(x), x=a..b, output=value );
evalf( avg );
FunctionAverage(f(x),x=a..b,output=plot);  # (d)
fsolve( f(x)=avg, x=0.5);

fsolve( f(x)=avg, x=2.5);

fsolve( f(x)=Avg[1000], x=0.5 );

fsolve( f(x)=Avg[1000], x=2.5 );

89-98. Example CAS commands:

Mathematica: (assigned function and values for a, b, and n may vary)

Sums of rectangles evaluated at left-hand endpoints can be represented and evaluated by this set of commands
Clear[x, f, a, b, n]
{a,b}={0, 7}; n=10; dx = (b — a)/n;
f = Sin[x]?;
xvals =Table[N[x], {x, a, b — dx, dx}];
yvals=f/x — xvals;
boxes = MapThread[Line[{ {#1,0},{#1, #3},{#2, #3},{#2, 0}]1&,{xvals, xvals + dx, yvals}];
Plot[f, {x, a, b}, Epilog — boxes];
Sum([yvals[[i]] dx, {i, 1, Length[yvals]}]//N

Sums of rectangles evaluated at right-hand endpoints can be represented and evaluated by this set of commands.
Clear[x, f, a, b, n]
{a,b}={0, 7}; n=10; dx = (b — a)/n;
f = Sin[x]?;
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xvals =Table[N[x], {x, a + dx, b, dx}];
yvals =f/x — xvals;
boxes = MapThread[Line[{ {#1,0},{#1, #3},{#2, #3},{#2, 0}]1&,{xvals — dx,xvals, yvals}];
Plot[f, {x, a, b}, Epilog — boxes];
Sum([yvals[[i]] dx, {i, 1,Length[yvals]}]//N
Sums of rectangles evaluated at midpoints can be represented and evaluated by this set of commands.
Clear[x, f, a, b, n]
{a,b}={0, 7}; n=10; dx = (b — a)/n;
f = Sin[x]?;
xvals =Table[N[x], {x, a + dx/2, b — dx/2, dx}];
yvals = f/.x — xvals;
boxes = MapThread[Line[{ {#1,0},{#1, #3},{#2, #3},{#2, 0}]1&,{xvals — dx/2, xvals + dx/2, yvals}];
Plot[f, {x, a, b},Epilog — boxes];
Sum([yvals[[i]] dx, {i, 1, Length[yvals]}]//N

5.4 THE FUNDAMENTAL THEOREM OF CALCULUS

L. fi@x +5)dx = [x2 + SX]E2 = (02 +50)) — ((=2)* +5(-2)) =6

2. fi(5 -3 dx= {SX— %2} : = (5(4) - 4?2) — (5(_3) _ (—j)z) = L3

o foxexe o [l -man= [5 -] (-0 - (-0

o [l aama=[een] = (U oar ) - (- racn) =2
s [ (- g) o= [ - )= (- 1) - (9 - %) =

6 fz(x3—2x+3>dx:[§—x2+3x} =(3-2+430) - (Z - 22 +3¢-2) = 12
[ e VR e [ 3] = () 0=t

32
8. j: x0/5 dx = [—5)(‘1/5] ?2 — (_ %) —(=5) = %
/3
9. fo 2 sec?x dx = [Ztanx]g/3 = (2tan (3)) —(2tan0)=2/3-0=23
10. j;n(1+COSX) dx =[x +sinx]j = (7 +sin7) — (0+sin0) =7
3n/4
11. f-/4 csc 6 cot § df = [—csc 0]2%4 = (—csc (31)) = (—ese (2)) = =2 - (7\/5) -0
/3
12. j; 4secutanudu = [4secu]g/3 =4 sec (%) —4sec0=412)—4(1)=4
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’ 1+ 2
s 2t _
13. fm% dt =

0
S G+ beosa0 di= 3ot Lsin20?, = (3O + § sin20)) = (3 (5) +§ sin2(5))

/3 1 ) /3 1
— cos 2t — 1
14. fw/.“a At fw/3(2

INH

[Lt— 1 sin2f] j/j/g

= () - dsn2(D) - (-9 -

) - fsin2(=9)) = - dein¥ 4§+ fein(F) =5
/4 ) /4 ) 7r/4
15. j; tan xdx:j; (sec?x — 1)dx = [tanx —x]g’ = (tan () — %) — (tan (0) —0) =1 — %

/6 /6 /6
16. j; (secx + tan x)* dx = j:) (sec? x + 2sec x tan X + tan? x)dx = f

= [2tan x + 2secx — x]7/* =

(2sec® x + 2sec x tan x — 1)dx
0

(2tan(Z) +2sec(f) — (%)) — (2tan 0+ 2sec0 — 0) =2¢/3 — 2 —2

/8 /8
17. f sin2x dx = [—% coS 2Xi|
0 (

(—Lcos2(2)) — (~Lcos2(0)) = 222

—m/4 —m/4
18. jiﬁ/} (4 sect + t%) dt = f

L (Gsec? tm?) dt = [4tan t - §] ::;;‘
— (4tan(_ ) —ﬁ) - (4tan(§) _ (—ﬂg)) ()44 (4(_\/5) +3) s

z
) flfl(r+1)2dr:ﬁ*l(r2+2r+1)dr: {§+r2+r} 1—1: (%H_I)QH_I))_(%@HMI) — 3

V3 V3
20. fﬁ(t—l—l)(t2+4)dt:f7

- ﬁ(t3+t2—|—4t—|—4)dt:{
= <@+({3Y+2(\@)2+4ﬁ> B ((—\4/5)4+ (_/5)3

S
+
W[
+
)
-
[\
+
N
[

. LB s -waon o ale o) - (20 )

s - -~ 3
22. Lyyfydy*L (y? =2y ?)dy = [2

23, flﬁsz*ﬁ

8, , 8 , 8
4. fl (x 3+;)1,(32_X“) dx:j: 2X1,3,i$27x23 dX:fl (2- x2/3+2x’1/3fxl/3) dx =

[2x = 308 38 = 3xB)) = (28) - 18)° +38)° = 3(8)°) = (21) = 317 +301 = 3()*"?)
_ _ 137
20

™ m
sin 2x _ 2 sin X COS X
25. j;/zZSinx dx = \L/

T dx = f:zcosx dx = [sinx] ﬁ/ = (sin (7)) — (sin (%)) = -1
, m/2
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/3

/3 /3
26. j; (cosx + secx)? dx = j; (cos? x + 2 + sec? x)dx = fo (e bl 4 2 4 sec? x)dx
/3

/3
= f; (3cos2x + 3 + sec? x)dx = Hsin2x + 3x + tan x} .

— (4sin2(2) + 3(3) +tan(3)) — (4sin2(0) + (0) + tan(0)) = 3 4 27

4 0 4 0 4 570
27. f \x|dx:f |x|dx—|—f |x|dx:—f xdx—f—f xdx = [—%} +
4 —4 0 —4 0 —4

.y /2 ™ /2
28. fo 3 (cos x + [cos x| ) dx = L[; 1(cos x + cos x) dx + j:/z 3 (cos x — cos x) dx = fo cos x dx = [sinx]g/2

p.t
2

La—|
(9
—_
ST
Il

®? £ _ 0\ _
<—5+ 2 >+(5—7)*16

:singfsinOZI

Vx VX
29. (a) fo cos t dt = [sin t]a/; = sin 4/X — sin 0 = sin ﬁ = % <ﬁ costdt) di (sm ﬁ) = cos \/§ (%x‘lﬁ)

_cos /X
=3

(b) % <j;\/;costdt) = (cos \/§) (% (ﬁ)) - (Cos \/;) (%X—I/Q) _ m;sTxx

30. (a) 1. 3dt=[¢])"" =sin®x -1 = & ( 1» 3¢2 dt) & (sin®x — 1) = 3 sin? x cos x

(b) & (f: 32 dt) = (3sin’x) (& (sinx)) = 3 sin®x cos x

@ [ adi= [wan= 2en)l 22020 o g(f \/ﬁdu)—%@tﬁ)—4t5
®) 4 (f \ﬁdu) VA (2 (1) = € (48) = 46
tan tan 6
32. (a) fo sec’y dy = [tan y]®"? = tan(tan ) — 0 = tan (tan §) = % (j; sec ydy) i d_(tan (tan 0))

= (sec? (tan 0)) sec? §

tan 6
) & (j; sec2ydy) = (sec? (tan 0)) (& (tan 6)) = (sec? (tan 0)) sec® ¢
33.y:f0\/1—|—t2dt:>g—i:\/1+x2 34.y:f1dt:>3§——x>0

0 V&
35 y= [ sindar=—[Tsineat = & = —(sin (%)) (& (VX)) = i) (§x12) = —sox

2

36. y:xj; sin t3 dt = gy—x dd—x(j;

XZ
= 2x2%sin x° + j; sin 2 dt

2 2

sin t3 dt) +1- j; sin > dt = x - sin (x2)3(%((x2) + j; sin t3 dt

_ ! dy _ _x? X2
37. yif t2+4dt j;t2+4dt = dx7x2+4_x2+470
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38, y_<f0x(t3+1)10dt>3:> j§_3<ﬁx(t3+1)‘°dt>;<f() @+ 1" >_3(x + 1) (fox(t3+1)lodt>

sin x
dy _ 1 COSX __ COSX

_ dt T _ . T
9.y=), F=K<3 = E=70 (& (sinx)) = \/— (cos x) = e = €% — 1 since |x| < 3

tan x
a d d
a0 y= [ i = 8 = (k) (& @n ) = () (see? ) = 1
41, —x2-2x=0 = —x(x+2)=0 = x=0o0rx = —2; Area y
92 2
*ffg x72xdx+f x72xdx7f0(7x272x)dx -372 -1 1
; -2

0 2
S ARCH U AR
{ 37X —3+ ER N ERE I

42. 3x2 —=3=0 = x> =1 = x = = I; because of symmetry about )

the y-axis, Area = 2 (—j: (3x% — 3)dx + ff(3x2 — 3)dx> 8
2 (=16 = 3x]y + 6 = 3x7) = 2[= ((1° = 3(1) — (0° = 3(0))) 6
4

(27 = 3) ~ (17 = 3(1)] = 2(6) = 12 y=3¢ -3

43. x3 =32 4+2x=0 = x(x> =3x+2)=0 0.a)

: X -3 e 2x
= x(x—2)x—1)=0= x=0,1,0r2; o.ZV\y= ¥
1 2
Area = j; (x?’—3x2+2X)dX—f1 (x* = 3x% + 2x)dx 0.5 ) 1.5 X
0 1 -0.4

:<IT4_13+12>_(OI4_03+02)

04 14 _ 1
~[(F-2+2) - (5 -B+12)] =1
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4. x13 —x=0 = x!/3 (l —x2/3) =0 = x'3=0o0r 1y y=xm—x
1-x=0= x=00r1=x*% = x=0o0r -1\, 5 y 3 X
l1=x> = x=0o0r+1; -1

0 1 8 -2
Area:—jil(xl/3—x)dx+ﬁ) (xl/?’—x)dx—f1 (x1/3—x)dx _3
0 1 8
T e

12 -5

- [Go#-%) - (Gene - 52 .
3
4

45.

46.

47.

48.

49.

50.

51.

)~ (o)
HOLEE IR HIOLEES]
_|_

H-%

The area of the rectangle bounded by the linesy = 2, y = 0, x = 7, and X = 0 is 27r. The area under the curve

y =1+cosxon [0, 7] is fo (1 4+ cos x) dx = [x + sin x]] = (7 + sin ) — (0 4 sin 0) = 7. Therefore the area of

the shaded region is 2w — m = 7.

The area of the rectangle bounded by the lines x = ¢, x = 5{, y=sing = % = sin %” ,andy = 01is

5m/6
/6

57/6
1 (57 Ty _ @ N T 57 : I
5(6 76) = Z. The area under the curve y = sin x on [6, 6]15 fm sin X dx = [—cos X]

= (—cos ) — (—cos 7) = — (— ‘/75) + \/75 = /3. Therefore the area of the shaded region is /3 — .

On [— %,0] : The area of the rectangle bounded by the lines y = V2,y=0,0=0,and 0 = — T is V2 (%)
0

= ”Tﬁ . The area between the curve y = sec § tan f and y = O is f‘ﬁ 145€C 0 tan 6 df = [—sec 0]97T/4
= (—sec 0) — (—sec (— T)) = v/2 — 1. Therefore the area of the shaded region on [~ Z,0] is ”T‘/E + (ﬁ - 1) .
On [0, 7] : The area of the rectangle bounded by § = 7,60 =0,y = V2, andy = 0is /2 (%) = ”T\/z . The area

/4
under the curve y = sec 6 tan 6 is j; sec 6 tan 6 df = [sec 9]3/4 =secy —sec0= \/5 — 1. Therefore the area
of the shaded region on [O, %] is WT‘/E — (\/5 — 1) . Thus, the area of the total shaded region is

(#+\/§71>+(%ﬁ7\/§+1):%§.

The area of the rectangle bounded by the linesy =2,y =0,t=—Z%,andt=1is2 (1 — (= 5)) =2+ 7. The

0
area under the curve y = sec’ ton [—7F,0] is j:msec2 t dt = [tan t]gw/4 =tan 0 — tan (— §) = 1. The area

[SS1\S)

1 1
underthecurvey:1—t20n[0,1]isj; (1-t)dt= {t—g}oz( —g)—( —%3>: . Thus, the total

area under the curves on [f I 1] is1+ % = % . Therefore the area of the shaded region is (2 + g) — % = % + 3.

y:f Ldt-3 = d—y*1andy(7r):f.%dtf3:073:f3 = (d) is a solution to this problem.

dx — x

X -1
y:flsectdt—|—4 = g—i = secxandy(—l):j:l sectdt+4=0+4 =4 = (c)is asolution to this problem.

X 0
y:j;sectdt+4 = j—i:secxandy(O):j;sectdt+4:0+4:4 = (b) is a solution to this problem.
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X 1
52. y:j: 1dt—-3 = g—iziandy(l):ﬁ 1dt—3=0-3= -3 = (a)is a solution to this problem.

53.y:j:sectdt+3 54.y:£X\/1+t2dt—

b/2

55. Area = f (h — (‘é—.h) x2) dx = {hx — ‘gh—b"; yh y=h—(4h/b2 )x2

—b/2

-br2 b/2

56. k>0 = one arch of y = sin kx will occur over the interval [0, T| = the area = j; sinkx dx = [~ £ cos kx| | m/k

——Leos((f)) - (- eos ) =

ST G =gn =X P == f:%t_mdt: [t1/2] ) = /X e(100) — e(1) = /100 — /1 = $9.00

58. r:j:(2 )dx—Zf( (x+1)2> dx—2[x—(x111)]2:2{(3+ﬁ)—(O+ﬁ)}

- 1] —2(21) = 4.5 0r $4500

59. (a) t=0=T=85-3/25—-0=70°F;t=16=T=85—-3y/25—16=76°F;
t=25=T=285-325-25=285F
25 25
_ 1 _ _ — L _ )32
(b) average temperatuve = 25701; (85 325 t) dt = 5 {85t+ 2(25—1) ]0
=1 (85(25) 12025 — 25)3/2) — L (85(0) 12025 — 0)3/2) —75°F

60. (a) t=0=H=+/0+1+50)" =1fst=4=H=/4+1+54)"°=/5+5V4 ~10.17 fi;
t=8=H=1/8+1+58)"7 =131t

8
(b) average height = ﬁj; Vvi+1 +5t1/3> dt = é{% (t+1) 2415 t4/3} .

=136 EEY) (G014 FO07) = 2 06T f
61. ff(t)dt—x —2x+1 = f(x) = dxff(t)dt (x —2x4+1)=2x-2
62. j;xf(t) dt=xcosmx = f(x)=4 j;xf(t) dt = cos mx — 7wx sin 7x = f(4) = cos 7(4) — 7w(4) sin 7(4) = 1
Todt=2-0=2;

x+1 1+1
63. f(x):2—j; T dt = f’(x):—m:% = f’(1):—3;f(1):2—f2

Lx)=-3x—-D+f1)=-3x—-1)4+2=-3x+5
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64. g(x) =3+ j:xnsec(t— Ddt = g'(x) = (sec (x> — 1)) (2x) = 2x sec (x> —= 1) = g(—=1) =2(—1)sec ((—=1)*> — 1)

(-1’ 1
:—Z;g(—l):Z'H—f1 sec(t—l)dt:3~|—f1 sect—1)dt=34+0=3;L(x)=-2(x—(—1)+g(—1
=2x+1)+3=-2x+1

65. (a) True: since f is continuous, g is differentiable by Part 1 of the Fundamental Theorem of Calculus.
(b) True: gis continuous because it is differentiable.
(¢) True, since g'(1) = f(1) = 0.
(d) False, since g’(1) = f'(1) > 0.
(e) True, since g’(1) =0and g"(1) = f'(1) > 0.
(f) False: g"(x) = f'(x) > 0, so g”’ never changes sign.
(g) True, since g'(1) = f(1) = 0 and g'(x) = f(x) is an increasing function of x (because f'(x) > 0).

66. Leta = x¢ < X; < Xz-+- < X, = b be any partition of [a, b] and let F be any antiderivative of f.
(@) > [F(xi) — F(xi—1)]
=1

= [F(x1) — F(xo)] 4 [F(x2) — F(x1)] + [F(x3) = F(x2)] 4+ - + [F(xa-1) — F(xn-2)] + [F(xa) — F(xn-1)]

— — F(xo) + F(x1) — F(x1) + F(x) — F(x2) + -+« + F(xy1) — F(xa 1) + F(xy) = F(xy) — F(xo) = F(b) — F(a)
(b) Since F is any antiderivative of f on [a, b] = F is differentiable on [a, b] = F is continuous on [a, b]. Consider any

subinterval [xi_j, ;| in [a, b], then by the Mean Value Theorem there is at least one number ¢; in (x;_1, X;) such that

[F(xi) — F(xi=1)] = F'(ci)(xi — xi—1) = f(ci)(xi — xi—1) = f(c;)Ax;. Thus F(b) — F(a) = Xn: [F(xi) — F(xi-1)]

i=1

M=

f(Ci)AXi.

1

(c) Taking the limit of F(b) — F(a) = Enjf(ci)Axi we obtain  lim (F(b) — F(a)) = lim (if(ci)Axi>

i=1 [[P[|—0 [PI=0 \i=1

= F(b) ~F(a) = |, "£(x) dx

67-70. Example CAS commands:

Maple:
with( plots );
fi=x -> x"3-4%x"2+3%x;
a:=0;
b:=4;
F := unapply( int(f(t),t=a..x), X ); # (a)
pl := plot( [f(x),F(x)], x=a..b, legend=["y = f(x)","y = F(x)"], title="#67(a) (Section 5.4)" ):
pl;
dF :=D(F); # (b)
ql :=solve( dF(x)=0, x );
ptsl := [ seq( [x,f(x)], x=remove(has,evalf([q1]),]) ) ];
p2 := plot( ptsl, style=point, color=blue, symbolsize=18, symbol=diamond, legend="(x,f(x)) where F '(x)=0" ):
display( [p1,p2], title="81(b) (Section 5.4)" );

incr := solve( dF(x)>0, x ); #(c)

decr := solve( dF(x)<0, x );

df := D(f); #(d)

p3 := plot( [df(x),F(x)], x=a..b, legend=["y = f '(x)","y = F(x)"], title="#67(d) (Section 5.4)" ):
p3;

q2 := solve( df(x)=0, x );
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pts2 := [ seq( [x,F(x)], x=remove(has,evalf([q2]),]) ) ];
p4 := plot( pts2, style=point, color=blue, symbolsize=18, symbol=diamond, legend="(x,f(x)) where f '(x)=0" ):
display( [p3,p4], title="81(d) (Section 5.4)" );

71-74. Example CAS commands:
Maple:

a:=1;
u:=x->x"2;
f:=x->sqrt(1-x2);
F := unapply( int( f(t), t=a..u(x) ), X );
dF :=D(F); #(b)
cp := solve( dF(x)=0, x );
solve( dF(x)>0, x );
solve( dF(x)<0, x );
d2F := D(dF); #(c)
solve( d2F(x)=0, x );
plot( F(x), x=-1..1, title="#71(d) (Section 5.4)" );

75. Example CAS commands:
Maple:
f:="1;
ql := Diff( Int( f(t), t=a..u(x) ), X );
dl :=value(ql );

76. Example CAS commands:
Maple:
f.="f;
q2 := Diff( Int( {(t), t=a..u(x) ), X,X );
value( g2 );

67-76. Example CAS commands:
Mathematica: (assigned function and values for a, and b may vary)
For transcendental functions the FindRoot is needed instead of the Solve command.
The Map command executes FindRoot over a set of initial guesses
Initial guesses will vary as the functions vary.
Clear([x, f, F]
{a,b}= {0, 27}; f[x_] = Sin[2x] Cos[x/3]
F[x_] = Integrate[f[t], {t, a, x}]
Plot[{f[x], F[x]},{x, a, b}]
x/.Map[FindRoot[F'[x]==0, {x, #}] &,{2, 3, 5, 6}]
x/.Map[FindRoot[f'[x]==0, {x, #}] &,{1, 2, 4, 5, 6}]
Slightly alter above commands for 75 - 80.
Clear[x, f, F, u]
a=0; fl[x_]=x*—2x—-3
ulx_]=1-—x?
F[x_] = Integrate[f[t], {t, a, u(x)}]
x/.Map[FindRoot[F'[x]==0,{x, #}] &,{1,2,3,4}]
x/.Map[FindRoot[F"[x]==0,{x,#}] &,{1,2,3,4}]
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After determining an appropriate value for b, the following can be entered
b =4;
Plot[{F[x], {x,a,b}]

5.5 INDEFINTE INTEGRALS AND THE SUBSTITUTION RULE

I. Letu=2x+4=du=2dx = jdu=dx
f2(2x+4)5dx:f2u5%du:fu5du:%u6+C:%(2x+4)6+C

2. Letu=7x—1=du=7dx = %du:dx
J1vx—Tdx= [10x - 1) ax = [ 2 ldu= [ u'2du=2uw2+C=2(x- 1) 4C

3. Letu=x*4+5=du=2xdx = %du:xdx

f2x(x2+5)74dx:f2u_4 %du:fu“‘du:—% u_3—|—C:—%(x2—|—5)73+C

4. Letu=x*+1=du=4x>dx = %du:x3dx

X3 -2 _ — — —
f(xle)zdx:f4x3(x4+l) dx= [4u?ldu= [u2du=—u'4C= 7 +C

5. Letu=3x*+4x = du = (6x +4)dx =2(3x +2)dx = jdu= (3x+2)dx
5
f(3x+2)(3x2+4x)4dx:fu4 %du:%fu“du:%us—i-C:%O (3x2—|—4x) +C

6. Letu:1+\/§;sdu:27\1/idx = 2du:%dx

fi(”%?”dx:f(uﬁ)‘”ﬁdx:fu1/32du:2fu1/3du:2~§u4/3+C:g(1+ﬁ)4/3+c

7. Letu=3x = du=3dx = %du:dx

fsin3xdx:f Isinudu=—3cosu+C=—1}cos3x+C

8. Letu=2x> = du=4xdx = jdu=xdx

fxsin(2x2)dx:fisinudu:—%cosu+C = —Jcos2x* +C

9. Letu=2t = du=2dt = Jdu=dt
fsec2ttan2tdt:f%secutanudu:%secu—l—Cz%sec2t+C

10. Letu=1—cos 5 = du:%sin%dt = 2du=sin 5 dt

f(l—cos%)Q(sin%) dt:f2u2du:%u3+C:%(l—cos%)3+C

I1. Letu=1-1 = du=—-32dr = —3du=09r2dr

ff% = [—3uY2du=—3Qu2+C =—6(1-r)"* +C

12. Letu=y* +4y> +1 = du= (4y> +8y)dy = 3du=12(y*+2y)dy
[ +a 1 P +2y)dy= [3udu=w+C=(y' +4y* + 1)’ +C
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Letu=x%2-1 = du:%xl/de = Zdu:\/;dx

fﬁsin2(x3/2—1) dx:f3sm udu=2(4—1sin2u)+C=1(x*?—-1)-Llsin(2x2-2) +C
Letu= -1 = du= % dx

f%cos%%)dx:fcosQ(—u)du:fCOSQ(u)du—( +1sin2u) +C=—2L +1sin(-2)+C
:—%—%sm()—kc

. (@ Letu=cot20 = du= —2csc?20df = — J du=csc?20df

fcsc220cot20d0:ff udu——7<—)+C———+C—f—cot220+C
(b) Letu=csc20 = du= —2csc20cot20df = —%du:csc2900t29d9

fCSCQZQCOtZQdQZI—%udUZ—%(%)+C=—%2+C=—%080229+C

(a) Letu—5x+8:>du—5dx:>%du:dx
S =i (&)d=t [utPau=1 () +C=2u+C=2/5xF8+C
(b) Letu=1/5x+8 = du=1(x+8) V25 dx = Zdu= ﬁ

fm [2au=2u+C=25x+8+C

Letu=3-2s = du=—-2ds = —1du=ds
[V3—2sds= [ Ju(-L1du)=—1 [uldu=(=1) Gu?)+C=-1(3 292+ C
Letu:55+4:>du:5ds:>%du:ds

f \/5i+4dszfﬁ(%du) :%fu_l/QdUZ(%) (2u1/2)+C:%4/55+4+C

Letu=1—-6* = du=-20df = — 5 du=064dd

JoT=do= [ u(-Lauw) =1 [utdu=(-1) (¢u/)+C=-2(1-6)"" +C

Letu=7—-3y? = du=—6ydy = —%du:?)ydy

f3y\/773y2dy:f\/ﬁ(f%du):f%fulﬂdu:(f%) (%u3/2)+C:f%(773y2)3/2+C
Letu:1+\/§ = du= =

f 1+\[ fzdu__ :1;\2/I+C

Letu=3z+4 = du=3dz = fdu=dz
fcos(3z—|—4)dz—f(cosu)( du): fcosudu—gsmu—i—C —sm(32—|—4)—|—C

dx = 2du:%dx

%»-t

Letu=3x+2 = du=3dx = jdu=dx
fsecZ(3X+2)dx:f(sec u)( du): fsec udu—%tanquC %tan(3x+2)+C

Letu =tanx = du = sec’?x dx

ftan2xse02xdx:fu2du:%u3+C:%tan3x—|—C
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25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Letu=sin (3) = du=1cos(3)dx = 3du=cos(})dx

fsm5(3)cos( )dx—fu (3du)=3(zuf) +C=4sinf(3)+C

Letu—tan(Q) = —sec (%) dx = 2 du = sec? (g) dx
t

du
Jan (3) see? (3) ax = [w @dwy =2 (§u) + C = Lan® (3) +C
Letu:%—l:>du—r2dr:>6du—r2dr

Je(s—1) a=fveaw=6fva=6()+c=(5-1) +c

Letu—7f% = du=— %r‘*dr = —2du=r*dr

7-2) dr= [ (2du)=-2 [wddu=-2(%)+C=-1 7-2) 4c
f( 10) f f (4) 2( 10)

Letu=x%24+1 = du*é x1/2dx = 2dufxl/2dx

f)(l/2sin(><3/2 dx—f(smu) (3du) =2 fsmudu—3( cosu)+C=—2cos (x¥24+1) +C

Letu = csc (“57%) = du= — 3 csc (Y57) cot (5

Jese (45%) cot (+57)

Letu=cos(2t+1) = du=—2sin(2t+ 1)dt = ——du_s1n(2t—|—1)dt

sin (2t + 1) _ _ldu __ 1 —
f cos? 2t+ 1) dt = 2w T 2u +C=

T) dv = —2du = csc (*5F) cot (Y5
= f—2du: —2u4+C=—-2csc(5E)+C

™) dv

2cos(2t+l) +C

Letu=secz = du=secztanzdz

Joepmedz— [ du= [u2du= 2024 C=2y/fsecz 4 C

Letu=1—1=t"'—1= du=—-t?dt = —du=}dt

ftlz cos (1 —1) dt:f(cosu)(—du):—fcosudu = —sinu+C=—sin({ -1)+C

_ _ ¢1/2 _1.-1/2 - 1
Letu=\/t+3 =t/ 43 = du=jt"2dt = 2du= J-dt

i L cos (vi+3) di= [ (cosw(2du)=2 [cosudu=2sinu+C=2sin(/t+3)+C

Letu=sin y = du= (cos ) (— ) df = —du=  cos ; df

fe%sin%cos%dﬁszudu:f +C—f—sm21+C

Letuzcscﬁéduz(—csc Gcotf)( )d9:> 2du—\[cot Gcscfdﬂ
i a0 = [ ot VBese V0 do = [—2du=—2u+C=—2ese O+ C=— 2o C

Letu=1+t! = du=43dt = jdu==¢*dt
Jea+tyd=[w(d)=1u)+Cc=L1+t) +C
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Letuzl—% = du:%dx

[Vtax= [ /tax= L /1-tax= [udu= [uPau=2w2+Cc=2(1-1"4cC

Letu:2f% = du:édx

[L/2-tax=[Vudu= [ulau=2wl+Cc=2(2-1)" 1C

Letuzl—L = du:ldxéldu:%dx

f% szzldx—fxﬂ/l—gdx— f du——f 1/Qdu——u?’/Q—i-C:%(1—)%2)3/2—1—C
Letuzl—iﬁdu— 4dx:> du——

[V ax= [hy/553ax= [h/1-3ax= [Valdu=1 [u2du= 2w 4c=2(1-3)+C

Letu:x3—1:> du:3x2dx:>ldu—x2dx

1/ dx—f\/—dx f\[% f’1/2du—— w24 C=2(x* ~1*4+c

Letu = x — 1. Then du = dx and x = u + 1. Thus fx(x—l)lodx:f(u—i—l)ulodu:f(u“+u10)du
:ﬁu12+ﬁul]+C:ﬁ(x_1)l2+ﬁ(x_1)ll+c

Letu =4 —x. Thendu = —1dx and (—1)du = dx and x = 4 — u. Thus fxx/4—xdx:f(4—u)\/ﬁ(—l)du
= f(4—u)(—u'/2)du = f(u3/2 —4u'/2) du = %us/z _ %us/z +C= %(4_)()5/2 _ 2(4_)()3/2 LC

Letu=1—x.Thendu = —1dx and (—1)du = dx and x = 1 — u. Thus f(x+ 1)*(1 — x)°dx
f( u)?ud (1) du = f(fu7 + 408 —4ud)du=—fud 4+ 30" — 2u® 4+ C
=11 -x*+41-x"-21-x°+C

Letu = x — 5. Then du = dx and x = u + 5. Thus f(x+5)(x —5)3ax = f(qu 10)u!/3 du = f(u4/3 + 10u'/?) du
_ %u7/3 + 1_25u4/3 +C= %(x—5)7/3 + %(x—5)4/3+C

Letu = x? + 1. Then du = 2xdx and $du = xdx and x*> = u — 1. Thus fx?’\/x2 +1dx = f(u— 1)1\/udu

_ %f(uwz 1/2)du {2 5/2 2u3/2} 1C= %u5/2 _ éuS/Q +C=1(x2+ 1)5/2 Sl 1)3/2 LC

Letu=x*+1= du=3x’dxand x> =u— 1. So f3x5 X3+1dX:f(u*1)\/ﬁdu:f(u3/2*u1/2)dll
=202 - 22+ C=2(x*+ 1) - 2(x* + )2+ C

Letu:X2—4$du:2xdxand%du:XdX.ThuSf(2 7 dx = f(x2—4)_3xdx:fu’3%du:%fu’3du

= ly2pc=—lx2 -4 +C

— — _ X _ -3 _ -3 _ -2 -3
Letu-x—4:>du—dxandx—u—|—4.Thusfde—f(x—4) xdx-fu (u—|—4)du—f(u + 4u )du
= —u!'—2u24C=—-(x—-4)""'-2x—-4)*+C
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51. (a) Letu=tanx = du=sec’xdx;v=u® = dv=3u?du = 6dv=18u?du;w=2+v = dw=dv

18 tan’ x sec’ x _ 18u _ 6dv_ __ 6dw 2 _ -1 _
f (2+tan3x dx = f > du = o = J e f6fw dw=—-6w " +C=
= +C=-— +C
2—&-u3 2+tan3x
(b) Letu=tan®x = du=3tan’xsec’xdx = 6du=18tan’xsec’xdx;v=2+4+u = dv=du
18 tan’ x sec? x _ 6du 6dv __ 6 _ _
f (2 + tan3 x)° dx = f Q+u? T—_;‘i‘C— 2+u+c 2+tan3 +C

(c) Letu=2+tan®>x = du=3tan’xsec’xdx = 6du = 18 tan® x sec’ x dx
flStdnxsecde_ @:_g_i_cz_ 4+ C

(2 + tan3 x)* u? 2+ tandx tan X

52. (a) Letu=x—1 = du=dx;v=sinu = dv=cosudyyw=1+v? = dw=2vdv = %dw:vdv
f\/l—i—sin?(x—1)sin(x—1)cos(x—l)dx:f\/l—|—sin2usinucosudu:fv 1+v2dv
= [Lwdw=1w e Cc=1(14+v) 4 C= (1 +sin20)’ +C= L (1 +sin(x— 1)+ C
(b) Letu=sin(x—1) = du=cos(x—Ddx;v=1+u? = dv=2udu = %dv:udu
f\/l—i—sinQ(x—l)sin(x—l)cos(x—l)dx:fu 1+u2du:fl\/§dV:flV1/2dv
L)) +c=1v3rpc=ta+w)P+C=L(1+sin2(x— 1) +
(c) Letu=1+sin’(x—1) = du:251n(xfl)cos(x71)dx = %du:sm(xfl)cos(xfl)dx
f\/l—l—sin?(x—1)sin(x—1)cos(x—1)dx:f%\/ﬁdu:f%ulmdu:%(%usﬂ)-i-c

— (1 +sin2(x— 1)** +

53. Letu:3(2r—1)2+6:>du:6(2r—1)(2)dr:>%du:(Zr—l)dr;v:\/a:>dv=ﬁdu = %dV:ﬁdu

f (zr_l\)/c;z;\/w dr-f(coi/—\f) (35 du) :f(cosv)(%d) Lsinv+C=1Lsin/u+C

:gs1n\/3(2r—1)2+6+C

54. Letu:cos\/@:>du:( s1n\/_)( )d9:>—2du—s“z/—\/d0

\/%d —fﬁ%da—fj?——zfu3/2du——2(—2u1/2)+c—%+c
~— 4
cos /0

55. Letu=3t>—1 = du=6tdt = 2du= 12tdt
s= [12032 - )’ dt= [wedp=2(luw)+C=lut+C=1GBE -1 +G
s=3whent=1=3=53-1)'"+C = 3=8+C = C=-5 = s:%(3t2—1)4—5

56. Letu=x2>+8 = du=2xdx = 2du=4xdx
y= [4x(2+8) P dx= [uF2dwy=2(3u) +C=3u2+C=3(x*+8)
y=0whenx=0 = 0=3@8)23+C = C=-12 = y=3(x2+8)"* - 12

2/3 e

57. Letu=t+ {5 = du=dt
s:‘/‘Ssin2 dt7f851n udu—8(———sm2u)+C:4(t+%)—25in(2t+%)+C;
s:SWhent—O = 8=4(f)-2sin(f)+C = C=8-F+1=9-1%

= s=4(t+5) —2sin(2t+7)+9—F =4t —2sin(2t+ Z) +9
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58. Letu= 7 —6 = —du=4df
r_f3czos 9d6’—7f30052udu:f3(E + 4sin2u) +C=-3
rfgwhen9f0:>%:—%—Zs1n——|—C:>C 242 s r=-3(
=r=30-3sin(Z-20)+2+3 = r=30—2cos20+%+3

59. Letu=2t— 1 = du=2dt = —2du=—4dt
¢ — [ —4sin(2t—3) dt= [ (sinu)(—2dw) = 2 cos u+C; = 2 cos (2t — T) +Cy;
att =0and $ = 100 we have 100 =2 cos (—5) +C; = C; =100 = $ =2cos (2t — 5) + 100
— s= [ (2cos (2t— Z) +100) dt = [ (cos u+ 50) du = sinu+ 50u + Cy = sin (2t — I) + 50 (2t — I) + Co;
att=0ands =0wehave 0 =sin (—7) +50 (= 5) +Co = Cy=1+257
= s=sin (2t — J) 4 100t — 257 + (1 + 25m) = s =sin (2t — J) 4 100t + 1

60. Letu=tan2x = du=2sec’2xdx = 2du=4sec’2xdx;v=2x = dv=2dx = 1dv=dx
dy—félsec 2Xtan2xdx—fu(2du)—u +C; =tan?2x 4+ Cy;
atx=0and £ =4wehave4d =0+C; = C; =4 = £ =tan’2x +4 = (sec’2x — 1) + 4 = sec? 2x + 3
= y=f(SCCQZX—l-?))dX:f(SCCQV—F?)) (Adv) =ftanv+3v+Cy=1tan2x+3x+Cy
atx:Oandy:—lwehave—l:%(0)+0+C2 = C=-1 = y:%tan2x+3x—1

6l. Letu=2t = du=2dt = 3du=64dt
s= [6sin2tdi= [ (sinu)3du) = 3 cos u+C = —3 cos 2t + C;
att=0ands=0wehave0 = —3cos0+C = C=3 = s=3—-3cos2t = s(Z) =3 —3cos(r)=6m

62. Letu=7nt = du=7dt = wdu=n?dt
szﬁ2 c0s7rtdt:f(cosu)(ﬁdu):wsinquCl = 7 sin (7t) 4+ Cyq;

att=0andv=8wehave 8§ =7(0)+C; = C; =8 = v:ﬁzwsin(wt)—i—é% = s:f(ﬂsin(m)—l—S)dt

:fsinudu+8t+C2:—cos(7rt)+8t+C2;att:Oands:0wehaveO:—1+C2 = C=1
= s=8t—cos(mt)+1 = s(I)=8—cosm+1=10m

63. All three integrations are correct. In each case, the derivative of the function on the right is the integrand on
the left, and each formula has an arbitrary constant for generating the remaining antiderivatives. Moreover,

sin?x+C; =1—cos?x+C; = Cy=1+Cy;also —cos?x + Cy = f%f%JrCz = C3:C27%2C1+%.

1/60
64. (a) ( L 0) o Vi sin 1207t dt = 60 [~V (1) cos (12070)] /* = — ¥ [cos 27 — cos 0]
=—Yu[l1-1]=0
(1) Vix = V/2 Vi = v/2(240) ~ 339 volts

1/60 1/60 ) 1/60
© fo (Vaa)? sin? 1207t dt = (V) fo (Lcos240mt) g — (ow) j; (1 — cos 240nt) dt

120

2

o) 1/60 o) : w)’
= 855 = (gpe) sin 240mt] | = O [(G5 — (i) sin@m) = (0= (g557) sin (0))] = 55
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5.6 SUBSTITUTION AND AREA BETWEEN CURVES

1.

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

Letu=y+1 = du=dy;y=0 = u=1y=3 = u=4

[ vatay= [weau=[2we) = ) @p - ()2 = () ® - (2) ()= ¥

Use the same substitution foruasinpart (a);y=—1 = u=0,y=0 = u=1

0 1
[ yaTdy= [wrau=[2u2)) = (3) 2 -0 =2

Letu=1-r*> = du= —2rdr = —%du:rdr;r:O > u=1Lr=1=u=0

1 0
[evi—ea= [ -1 fiau=[-1u2] =0— (- 1) )2 =

Use the same substitution for u as in part (a);r=—1 = u=0,r=1 = u=0

ﬁllr\/l—err:ﬁo—%\/ﬁdu:O

Letu=tanx = du=sec?xdx;x=0 = u=0,x=2 = u=1

4
” 1 2] _ 1
f tanxsecQde:fudu:[lﬂ =L 0=
0 0 0

Use the same substitution as in part (a); x = 7% = u=—1,x=0=u=0
0 0 0
2 _ . —0_Ll__1
j:mtanxsec xdx—j:]udu— {2]_1—0 3=—5
Letu=cosx = du=—sinxdx = —du=sinxdx;x=0 =>u=1,x=7m = u=—1
™ —1
ﬁ3coszxsinxdx:£ —3u? du:[—u3];1:—(—1)3—(—(1)3):2
Use the same substitution as in part (a); x =27 = u=1,x=371 = u=—1

3 —1
, 30052xsinxdx:j: —3u2du=2

u=1+t" = du=4dt = tdu=0d;t=0 = u=1t=1 = u=2

1 2 9
3 43 g 1.3 et T 2! 1115
[ea+eya=[1u du=[%] =F-%=14

Use the same substitution as in part (a);t=—1 = u=2,t=1 = u=2

1 2
3 43 g0 1.3 _
j:lt(lth)dt—j;Zu du=0

Letu=+1 = du=2tdt = Jdu=tdt;t=0 = u=1t=+7 = u=8

v 2 /3 4 _ 81 1/3 gy — [(L1) (3)44/318 — (3 4/3 _ (3 4/3 _ 45
0 t(t 4+ 1) " dt , 3u/’du [(3) (3w ]1 () ® () D 8
Use the same substitution as in part (a); t = f\/i = u=8,t=0=u=1

0 1 8
j:\ﬁt(t2+1)1/3dt:j;%u1/3du:—j:%ul/:‘du:—%

Letu=4+r1> = du=2rdr = %du:rdr;r:—l = u=5r=1=u=>5

1 5
5r _ 1,2 3,
ﬁ1(4+r2)2 dr—Sj; 2 U du=0

Use the same substitution as in part (a);r=0 = u=4,r=1 = u=>5

1 5
_ ~11% _ _
fo(4+5—rr2>2dr:5£ qultdu=5[-1ul] =5(-305) ) -5(-1@Y) =4
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8. (@ Letu=1+v¥? = du=3v2dv = Ldu=10/vdviv=0 = u=1Lv=1 = u=2
1 2 2
10v/v 1 (20 20 . 20 [172 20711 10
j;(1+va/2 d‘flu( du)—?fluzd“:—?[a]lz—?[i—i]z?
(b) Use the same substitution asinpart (a); v=1 = u=2,v=4 = u=1+4%2=9

4 9
9
S A Ra) =2 =2 (- =2 (- ) =1

9. (@ Letu=x2+1 = du=2xdx = 2du=4xdx;x=0 = uzl,x:\/g = u=4

" 2 fou12 1/214 1/2 1/2
X — — - J— — —
fo \rmd"*fl %d“*fzzu du= [4u'?]| =42 —4)'? =4

(b) Use the same substitution as in part (a); x = _\/§ = u=4,x= \/g = u=4

Vi 4 i
X — _~ J—
f—\/i Tﬂdxfﬁﬁdufo

10. () Letu=x*4+9 = du=4x3dx = %du:x?’dx;x:o = u=9x=1=u=10

g © —1/2 1 12110 _ 1 1/2 _ 1 g\l/2 — 1 -3
fo dx:f) Tu2du = [ @ut?] ) =1 (10) 19

xt+9
(b) Use the same substitution asinpart (a); x =—1 = u=10,x=0 = u=9

fo ; 91 , 101 ) 3_ /0
de:f—u‘”du:—f Lu=12 qu = 222
“1 /x149 104 9 4 2

11. (a) Letu=1—cos3t = du=3sin3tdt = ldu:sinStdt;t:O = u:O,t:% = u:l—cosgzl

f(:/ﬁ(l—cosSt)sin3tdt:L];]%udu:{—(u;) 0 6(1)2 6(0)2:%

(b) Use the same substitution as inpart (a);t =g = u=1,t=% = u=1—cosm =2
/3 2 2
: _ 1 1 (u?
ﬁ/ﬁ (1 —cos3t)sm3tdt—f1 sudu= {5 (7>]

12. (@ Letu=2+tan{ = du=1sec’ {dt = 2du=sec’ §dt;t=" = u=2+tan(F)=1,t=0 = u=2

0 2
2
17/2(2+tan§) sec?§dtzfl udu) =}, =22-12=3

(b) Use the same substitution as in part (a); t = - = u=1t=5 = u=3

1 6(2)2 6(])2 = %

/2
jl/z(2+tan sec dt—2f1 udu=[u —3 —12=38

13. (a) Letu=4+3sinz = du=3coszdz = %du:coszdz;z:0 s u=4,z=2mr => u=4
27 4
cos z _ 1 (1 _
0 \/4+3sinzdz_,_/; Ju (3du) =0
(b) Use the same substitution as in part (a); z= —m = u=4+43sin(—m)=4,z=7 = u=4

4
Dot a= [ (aw =0

14. (a) Letu=3+4+2cosw = du= —-2sinwdw = ——du—smwdw w=—3 =>u=3,w=0=u=5
0 5
sin w _ ) 1 _1 1(1_1y_ 1
,]:7/2(3+52ncosw)2dw_,_/;u (3dw) =5 =4(i-9=—-%
(b) Use the same substitution as in part (a); w =0 = u =135, w:g = u=3

/2 3 5
sin w _ -2 1 _ 1 -2 _ 1
J; (3 +2 cos w)? dw = j;u (_idu)ii!u du*ﬁ
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15. Letu=¢+2t = du= (5t +2)dt; t=0 = u=0,t=1 = u=3

1 3

ﬁ)\/t5+2t(5t4+2) dt:j;ul/2 du=[3 3/2] =232 - 2002 =23
16. Letu:1+ﬁ:>du—7 y=1=>u=2y=4 = u=3

4 3 3

[t = [ fras mi= (-4 - (1) =

17. Letu=cos20 = du=—2sin20df = —Jdu=sin20df;0=0 = u=1,0=2 = u=cos2(f) =3

/6 s ) 1/2 - 1 1 1/2 3 1 72 1/2 1 1 5
j; cos 2<9s1n29d9:f1 u?(—3du) =—3 fl u 3 du= [—5 (3)}1 BRTOHE Ul

18. Letu =tan (£) = du= % sec® (£) df = 6 du=sec? (£) dd;0 =7 = u=tan (%) =

1

S et et (an= [ e =[o(5)], o=l (<>>

19. Letu:5—4cost:>du:4sintdt:>%du:sintdt;t:O:>u:5—4cosO:l,t:w:>u:5—4cos7r:9

T 9 9
j;5(5—4cost)1/4sintdt:j:5u1/4 (%du)z%ﬁu”‘*du- [% (— ‘)/4)] =954 1 =352_1

20. Letu=1—sin2t = du = —2cos2tdt = —%du:cos2tdt;t:O = uzl,tz% = u=0

/4 0
[ —sin202 cos 2tae = [ —Lu¥du= [~ 1 (2u2)] 0 = (= LOP2) — (=L 1PP2) = L

21, Letu=4y —y> +4y3+1 = du= (4 -2y +12y?)dy;y=0 = u=1L,y=1 = u=4(1) - (1> +4(1)°* +1 =8
1 8
j; (dy —y2 +4y> + 1) 3 (12y2 — 2y + 4) clyzflm?/3 du = [3u1/3]f:3(8)1/3—3(1)1/3:3

22. Letu=y*+ 6y’ — 12y + 9= du= 3y’ + 12y — 12)dy = 1 du = (y’  + 4y —4)dy; y=0=u=9,y=1 = u=4

1 4
fo(y3+6y 12y +9) " (y? +4y74)dy:j;%u*1/2du*[% u/2)] = 2@ 292 =22-3)=

w\I\J

23. Letu=02 = du=30"2df = 2du=+0dh;0=0 = u=0,0=/n?= u=r

e/ﬁ
fo /0 cos? (63/2) dezfcos u(3du) =[3 (%—f-%sinZu)]g:%(%—l—%sinZﬂ)——(O)

24. Letu=1+1 = du=—t2dst=—1 = u=0,t=—3 = u=—1
—1/2 -1
L t2sin? (1+1) dt:j; —sin2udu:[—(g—isinzu)]j:—[(—%—isin(—z))—(g—isino)]
=1—1sin2

25. Letu=4—x% = du= —2xdx = ——du—xdx x=—2=>u=0,x=0=u=4,x=2=u=0

0
A:—f X\/4—x2dx+j;x 4—x2dx:—j;—%ul/Qdu—FL—%ul/zdu:Zj;%ul/zdu:j;uwdu

— I:g 3/2] _ 2 (4)3/2 2 (0)3/2 — 13_6

26. Letu=1—cosx = du=sinxdx;x=0 = u=0,x=7m = u=2

™ 2 .)2
fo (lfcosx)sinxdx:foudu: {%}0:%27%2:2

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI

Section 5.6 Substitution and Area Between Curves 299

.Letu=14cosx=du=—sinxdx = —du=sinxdx;x=—-nm=u=1+cos(—m)=0,x=0=u=1+cos0=2
0 2 2
A:—ﬁ 3(sinx)\/1—|—cosxdx:—j;3u1/2(—du):3j;u1/2 du = [2u3/2]§=2(2)3/2—2(0)3/2:25/2

.Letu=7m+msinx = du=7wcosxdx = Ldu=cosxdx;x=—% = u=a+7sin(—3)=0,x=0=u=r

0 T
Because of symmetry about x = — 5, A =2 pr 2 (cos x) (sin (7 + 7 sin x)) dx = 2 j; 2 (sinu) (L du)

= j; sinu du = [—cos u]j = (—cos m) — (—cos 0) = 2

1—cos2x.

. For the sketch given, a = 0, b = m; f(x) — g(x) = 1 — cos? x = sin* x = =582,

A:fO 7(1_°2052X)dx:%j;(l—coszx)dx:%[x—%]gZ%[(W—O)—(O—O)]:g

. For the sketch given,a = — 5, b = 3; f(t) — g(t) = § sec’t — (—4 sin?t) = § sec’t + 4 sin’ t;

/3 /3 /3 7/
A:f (1sec2t+4sin2t)dt:1f sec2tdt+4f sin2tdt:lf
—/3 2 2 —/3 —7/3 2J-

3 /3
sethdt+4f (lfgﬁdt
3 —/3

31.

32.

33.

34.

/3 /3 - . 7T/3
= %Lﬁﬂ/}se(:?tdt—i— 2]1ﬂ/3(1 —cos 2t)dt = % [tan t]f;3 + 2[t — %h]iﬂ/g = \/§+ 4 - % _ \ﬁ = %ﬂ

For the sketch given, a = —2,b = 2; f(x) — g(x) = 2x? — (x* — 2x?) = 4x% — x*;

2 2
A=l xya=[5 8] @B 2= g omm

For the sketch given, c = 0,d = 1; f(y) — g(y) =y — y%;

1 1 1 5 1 . 1
= = — _(1-0_ad-0 _ _
A= “(y2_y3)dy_ oy2dy_ Uyzdy_{%}o_{y?}o_T_T_ 1=

Wi
=
'—l’_k
o

For the sketch given, ¢ = 0,d = 1; f(y) — g(y) = (12y? — 12y?) — (2y? — 2y) = 10y? — 12y + 2y;

1 1 1 1 1 1 1
A= j; (10y? — 12y° + 2y) dy = j; 10y2 dy — j; 12y? dy+f0 2ydy = [2y*], - [y, + [3Y*],
=(2-0-G-0+0-0=3
For the sketch given,a = —1,b = 1; f(x) — g(x) = x> — (—2x?) = x? + 2x*%;

! : 5 1
a= [ rada=[Fa 5] =(ed - CDI=Fri=0E =

x2

. We want the area between the liney = 1,0 < x < 2, and the curve y = o, minus the area of a triangle

3

2 2
(formed by y = x and y = 1) with base 1 and height 1. Thus, A = fo (1 _ x;) dx — L)1) = [x— x—} -1

12
—C-%)-i-2-}-4-4

. We want the area between the x-axis and the curve y = x23,0<x<1 plus the area of a triangle (formed by x = 1,

1 1
X +y = 2, and the x-axis) with basc | and height 1. Thus, A = [ x? dx+ 1 (1)(1) = (%] +3=31+1=3

. AREA = Al 4+ A2

Al: For the sketch given, a = —3 and we find b by solving the equations y = x> — 4 and y = —x? — 2x

simultaneously for x: x> —4 = —x?> —2x = 2x>+2x—4=0 = 2(x+2)(x—1) = x=—2o0rx =150
2

b=-2: fx) —gx)= (x> —4) = (x> —=2x) =2x  + 2x — 4 = Al:f (2x2 4 2x — 4) dx

3
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-2
:{27’(3+%74x]73:( 184 448)— (—184+9+12)=9— 16 = 1L,
A2: For the sketch given,a = —2and b = 1: f(x) — g(x) = (—x* —2x) — (x* —4) = —2x? — 2x + 4
1 1
- A2=-L(2X2+2x—4)dx=—[%ﬂ+x2—4x}_2:—(§+1—4)+(—%+4+8)

=—2-1+4-24+448=9;
Therefore, AREA = Al + A2 =4 49 =38

38. AREA = Al + A2
Al: For the sketch given,a = —2 and b = 0: f(x) — g(x) = (2x3 — x? — 5x) — (—x% + 3x) = 2x3 — 8x

0 0
= A1:£2(2x3—8x)dx: {27"4—%2}_2:0—(8—16):8;
A2: For the sketch given,a = 0 and b = 2: f(x) — g(x) = (—x + 3x) — (2x* — x? — 5x) = 8x — 2x*
2 . 2
= A2 = fo (8x —2x3) dx = [87"2—27"4}0:(16—8):8;
Therefore, AREA = A1 + A2 = 16

39. AREA = Al + A2+ A3
Al: For the sketch given,a = —2andb = —1: f(x) —gx) = (—x+2) — (4 —x}) =x> —x -2
> al= [l ox-na= 5o -n] = (- ba2) - (i- e = o d= R e
A2: For the sketch given,a= —1andb=2: f(x) —g(x) = (4 —x*) = (—x+2) = — (x> = x — 2)
2 2
=>Azz—ﬁl(XZ—x—z)dXZ—[X;———zx} B e O e R e R e e
A3: For the sketch given,a =2 andb = 3: f(x) —g(x) = (—x+2) — (4 —x?) =x> —x -2
3 , 3
| I G SO C I B ST R
Therefore, AREA = Al + A2+ A3=1 42+ (9-3-8)=9-2=2

40. AREA = A1+ A2+ A3
Al: For the sketch given,a = —2 and b = 0: f(x) — g(x) = ("{ — x) —

0 0
- Alzlﬁz (x3—4x)dx:§{xl—2x2} 2:0—%(4—8):‘3—‘;

A2:  For the sketch given, a = 0 and we find b by solving the equations y = 5 — x and y =  simultaneously
3

forx: ¥ —x=2% =Y - 4x=0= ¥x-2x+2)=0 = x:—Z,x:O,orX=2sob:2:

3 2 2 472
f(X)—g(X)=§—<%—x>:—%(x3—4x) :>A2=—%ﬁ(x3—4x)dx:%j;(4x—x3):%{2){2—%}0
=38-4hH=1%

A3: For the sketch given,a =2 and b = 3: f(x)—g(x):(g—x)—gz

3

3
:>A3:lf2(x3—4x)dx:l[x41 2x }
Therefore, AREA = A1—|—A2—|—A3_‘3—‘—|—%—|—%—32+25 ]

41. a=-2,b=2;
f) —gx) =2 (x* =2) =4 —x
= A:IZ(4—x2)dx: [47(_%3}2_2:(8—%)—(—84—%)
8
3

)=
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a=—-1,b=3; y
f(x) —gx) = 2x —x?) — (=3) =2x — x> +3 ‘ y=2x-x2

3 ; 3
= A:j:l(ZX—X2+3)dx: {xQ—%+3x}_l
=09-F+9)-(1+3-3)=11-1=2

i /// / ;
. N

2
f(x) — g(x) = 8x — x* = A:L/;(Sxfxﬁ‘)dx
12
_ s w7 32 _ 80-32 _ 48
[ -] -te- 3 - -1

5 5 5

Limits of integration: x?> —2x = x = x? = 3x
= x(x—3)=0 = a=0andb =3;
f(x) — g(x) = x — (x2 — 2x) = 3x — x?

3 3
= A:j;(SX—XQ)dX:[%—%S]

0

_ 2 _27-18 _ 9
=5 -9="5"=3
Limits of integration: x> = —x?> +4x = 2x? —4x =0

= 2x(x—2)=0 = a=0and b = 2;
f(x) — g(x) = (—x2 +4x) — x> = —2x2 + 4x

2 2
= A= j; (—2x? + 4x) dx = {‘%"3 +4—’2‘2} .

_ 16 , 16 _ —32+48 __ 8
=—-3t3=""% =3

Limits of integration: 7 —2x? =x>+4 = 3x2-3=0
= 3x—1)x+1)=0 = a=—-landb =1;
f(x) — g(x) = (7 — 2x%) — (x> + 4) = 3 — 3x?

3

- A:£]1(3—3x2)dx:3[x—%]il
=3[(1=3) = (=1+3)] =6(5) =4

Limits of integration: x* — 4x? + 4 = x>
= xt =52 +4=0 = (-4 (x2-1)=0
S X4+ )X -DE4+DE -1 =0 = x =2, —1,1,2;
f(x) — g(x) = (x* —4x2 +4) — x> = x* — 5x®> + 4 and
gx) —f(x) = x> — (x! —4x® +4) = —x* +5x* -4
-1 1

= A:fz(—x4—|—5x2—4)dx+fl(x4—5x2—|—4)dx

2

_x4 2 _
—i—fl( x* + 5x* — 4)dx

%5 <3 -1 x5 <3 1 x5 x3
:{—§+ST—4X}72+{§—ST+4X} +{5 +ST
S P C e RTINS

60 4 60 _ 300-180 _ g
5 3 15

+

+ v

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI
302  Chapter 5 Integration

48. Limits of integration: xy/a> —x2 =0 = x=0or

Va2—x2=0 = x=0o0ra®?—x*=0 = x= —a,0, a;
0
A= —x2dx—|—f xv/ a2 — x2 dx
0
a—x 3/2] _ {_ —x2)3/2}

1
2
312)3/2 [ %aQ ]

Wi H

[N

0

[SSITE
—~

/=X, x <0
49. Limits of integration: y = \/|x| = { JK * : and
X, X

5y—x+6ory_5+6 for x < O0: \/_:§+5
= 5\/—x=x+6 = 25(—x) = x>+ 12x + 36

= x24+37x+36=0 = x+1DEx+36)=0 v=v"%
= x = —1, —36 (but x = —36 is not a solution);
forx 0: 5\/x=x+6 = 25x =x>+12x+36
= x2-13x+36=0 = x—4Hx—-9) =0

= X = 4, 9; there are three intersection points and aE

9
A= f X+6 —x dx—l—f ’”‘6 x)dx—i—j; (\/;—X;r(’) dx
4 2
_ {(XT(,@ n §(_x)s/z)} y i [<x1+06> _ %Xs/Q} . n [% x3/2 _ (x+6) ]

_ (36 25 2 100 2 36 2 : 225 2 100 __ 50 20 5
=(H-H-PDT(ET 34 -%+0)+ (-9 -F -3 #r+ ) =-5+5=3

[[=)

+6

7=, P 8-_._

x

50. Limits of integration:
—4, x< 2o0rx 2
— 2_4: X ) =
y=h =4 {4—X2,—2§x§2
forx < —2andx 2: x2—4:§+4
= 2x2-8=x248 = x2=16 = x= +4;
for—2§x§2:4—x2:%2+4:>8—2x2:x2+8

2

= x“ =0 = x = 0; by symmetry of the graph,

A=

foz{(x_2+4) —(4—x2 }dx+2£4[<§+4>_(xz

2
:2(% 0)—|—2(32 — 16+ 8 ):40_53_6:%4

51. Limits of integration: ¢ =0andd = 3;
f(y) — g(y) = 2y — 0 = 2y*

3 EE
= A= [ 2ytay= (x| =2-9=18
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52. Limits of integration: y> =y +2 = (y+ 1)y —2)=0
= c=—landd =2:f(y) —g(y) = (y +2) - y*

2 2
= a= [ or2-yay=[fy-3]
—(3+a-Y (-2 h=6-F 142 1]

53. Limits of integration: 4x =y? —4and4x = 16 +y
=y —4=16+y = y?—y—-20=0 =
y—5y+4)=0= c=—4andd = 5;

fy) - gy = (152) - (55) = 2
5

:%14(*y2+y+20)dy

[—y3—3+y72+20y}i

(-1 + 3 +100) — 5 (§ + 3 — 80)

(- 5+ 150) = 2

I
>

Il
B e e L

54. Limits of integration: x = y? and x = 3 — 2y?
= y2=3-2y = 3y?=3 = 3(y—-Dy+1H=0
= c¢=—landd = 1;f(y) — g(y) = (3 — 2y?) — y?

1
=3-3y’=3(1-y?) = A:3£](l—y2)dy

Sl RE I (EE RIS

55. Limits of integration: x = y?> —yandx = 2y? —2y — 6
=Sy —y=2y2-2y—-6=y>—-y—-6=0
= (y=3)(y+2)=0=c=—-2andd =3;

fly) —gy) = (y* —y) = (2y* =2y —6) = =y’ +y +6

3 3
_ 2 _ ¥ 12 §
= A—ﬁz( y +y+6)dy—[ T Ty T Oy|

=(-9+3+18) - (8+2-12) =12

56. Limits of integration: x = y*/ and x =2 — y*
=y =2-y' = c=—landd = I;
f(y) —gy) =2 -y") —y*
= A= 71(2—y4—y2/3) dy
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57. Limits of integration: x = y? — 1 and x = |y| /1 — y?
=y -l=yVI-y =y -2y +1=y"(1-y)
=y o2y 4 l=y -yt = 2yt -3y +1=0
= 2y -1y’ -1)=0 = 2y’ —1=00ry’—1=0
=y =joy'=1=y= :I:\/Tiory: +1.
V2

Substitution shows that iT are not solutions = y = =+ 1;
fOf—lSyﬁO,f(X)—g(x):—y 1—y2_(y2_1)

=1-y?—y(1- y2)1/2, and by symmetry of the graph,
0
A:2f [lfyty(l *yz)m} dy

—2f (1-y?) dy—2fy 212 y=2[y—y3—3

af0-0 1+ ) (-0 -

58. AREA = Al + A2
Limits of integration: x =2y and x = y* —y? =
Y-y =2y=yy -y-2)=yy+Dy-2=0
= y=-1,0,2:
for —1 <y <0, f(y) — gy) = y* — y* = 2y

0 4 3 0
:>A1:f (y3—y2—2y)dy:[%—%—y2}fl
:0*( Jr**1)_12’
for0 <y <2,f(y) — g(y) =2y —y* +y*

2 1 372
= A2=f0(2 —y3+y2)dy={y2—yz+y?}o

6
= (- gy 0=k
Therefore, Al + A2 = 5 + § =37

59. Limits of integration: y = —4x> + 4 andy = x* — 1
= x'—1=—-4x>4+4 = x*4+4x*-5=0
= (xX2+5)x-1Dx+1)=0 = a=—landb=1;
fx) —gx) = —4x> +4 —x* +1=—-4x> —x*+5
i 1
= A:ﬁl(—4x2—x4+5)dx: [—ﬁ———i—Sx]

e (s =2t

60. Limits of integration: y = x> and y = 3x> — 4
= x3-3x24+4=0= (x2—x-2)(x—-2)=0
= x+1Dx—-2°?=0 = a=—landb=2;
fix) —gx) =x3 — (3x? —4) =x* - 3x* + 4
= A= f x? —3x2 +4)dx—[x————|—4
B R -(e1-9 -7

2

-1
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61. Limits of integration: x =4 —4y?andx = 1 — y*
= 4-dy’=1-y' = y* —4y?+3=0

= (y=V3) (y+V3) 5 - Do+ D=0 = c=-1
andd = Isincex 0;f(y) — g(y) = (4 — 4y?) — (1 —y?)
=3—4y’+y' = A:£1](3—4y2+y4)dy

_ at vt 4, 1) _ 56
= By-4+%] =26-4+) =%

62. Limits of integration: x =3 —y? and x = _Y4_2
2 2
=3-y'=-5 = F-3=0=30-20+2)=0

= c¢=—2andd =2;f(y) — g(y) = (3 —y?) — (74{;)

“3(1-9) = a3 =3l x])

T R Y I A

63. a=0,b = f(x) — g(x) = 2 sin x — sin 2x
= A:L(Zsinx—sinzx)dx: [_2005X+%]g
=[-2-D+3] - (-2-1+3) =4

51 f(x) — g(x) = 8 cos x — sec” x
/3 y=8cos x
= Azf (E§COS)(—se:02x)dx:[Sisirlx—tanx]i/j’/3

/3

= (8- 9 -V3) (8- L +V3) =63

oy
I
b
I
|
w3
o
|

Ay=(secx)?

X

-4::/3 I 1:./3

65. a:—l,b:l;f(x)—g(x):(1—);2)—<:0s(2
1 3 1
:>A:Lﬁl[lfofcos(%)]dx:[xf%f%sin(%)] 1

S(-§-3) - (e —2(-y -t

™

66. A =Al1+ A2
a;=—1,by =0anda; =0,by = 1;
1 1 2 2 =) y=sin (xx/2)~ Yex

fi(x) — g1(X) = x — sin (%") and fy(x) — g2(X) = sin (7

= by symmetry about the origin,
1 -1 1
AL+ Ay =2A, = A:Zj; [sm(%) —x] dx
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67. a=—7%,b=Z;f(x) — g(x) = sec’ x — tan” x

/4

= A= j: /4(5602 x — tan® x) dx
/4

= j: /4[se02x — (sec?x — 1)] dx

o /4 . -
= j:ﬂ/‘ll -dx = [x]iﬁ/4: I (_ Zl) _

ME

68. c = —7%,d=Z;f(y) — g(y) = tan’ y — (—tan’ y) = 2 tan’ y
/4
=2(sec’y—1) = A= f7/42(seczyfl)dy

= 2tany —y17), = 2[(1- ) = (~1+5)]
=4(1-3)=4-n

69. ¢=0,d = 3;f(y) — g(y) =3siny,/cosy — 0 =3siny,/cosy y _
| 3s|ny\/

/2
= A= 3f0 siny,/cosy dy = —3 [3 (cos y)3/2] g/2

o

— 20-1)=2 .
x
70. a=—1,b=1;f(x) — g(x) = sec? (%) —x!/3 y
1 A
X X 1 /
= A= | [sec® (5) —x]dx = [Zran () — 1x°] ( " //é
=(sec|(xx/3)) 4
- (3v3-1)-[(-v3) -1 -4 Nalel?”

A y=x1/3

1

71 A=A + A,
Limits of integration: x =y?andx =y = y=1y>
= yvoy=0=yy-Dy+1)=0 = c;=-1,d, =0
andc; = 0,dy = 13 fi(y) — gi(y) = y* —y and

f2(y) — go(y) =y — y° = by symmetry about the origin,

111

1 4
A; 4+ Ay =2Ay :>A=21;(y—y3)dy:2|:y;_y?:|o
ol _ 1y _1
=2(3-1) =3

72. A=A+ Ay
Limits of integration: y = x?andy = x° = x
=2=x-x=0=3x-Dx+1)=0=a=-1,b,=0
and a; = 0, by = 1; f1(x) — g;(x) = x> — x° and
fo(x) — ga(x) = x° — x*

! 1
A+ Ay =2Ay = AZZL(X3—X5)dx:2{’%_%]

0
—2(-H -4

3 _ 5

= by symmetry about the origin,

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI

Section 5.6 Substitution and Area Between Curves 307

73. A=A+ A y

Limits of integration: y =xandy = & = x= 5, x#0  y=1/z2

x2

= x*=1=x=1,1K)-gX®=x-0=x

1 1
= A= [ xax= %], = o -a0=%-0

X

\

bl
N
>

]

Il
- (8]
bl

N
o
>
Il
|
—
Il
\
Lol
+
—_
Il
o=

74. Limits of integration: sinx =cosx = x=% = a=0

and b = 7; f(x) — g(x) = cos x — sin x
/4
= A= fo (cos x — sin x) dx = [sin X + cos x]g/4

=(2+2)-0+n=v2-1

75. (a) The coordinates of the points of intersection of the

line and parabolaarec = x> = x = +,/candy =c¢

(b) f(y) —g(y) = /¥y — (—/y) =2,/y = the area of the
lower section is, A, = j; C [f(y) — g(y)] dy

:21; VY dy =2 [5y¥?] = 5 ¢¥2 The area of the

entire shaded region can be found by setting ¢ = 4: A = (%) 4%/2 = 48 = 32 Since we want ¢ to divide the region
into subsections of equal area we have A = 2A, = 3 =2(%¢%?) = c=4%/3
© fX)—gx)=c—x2 = A ffﬁ [f(x) — g(x)] dx = f\ﬁ(c—XQ)dxf [cxf"—s} v, {c3/27 ﬁ]
g - L — *\ﬁ g - 7\ﬁ - 3 *\ﬁ - 3
= % ¢%/2. Again, the area of the whole shaded region can be found by settingc =4 = A = % From the

condition A = 2A,, we get % 3?2 = %2 = ¢ = 4%/ as in part (b).

76. (a) Limits of integration: y =3 —x?andy = —1
=3-x(=-1=x2=4 = a=-2andb=2;
f(x) —gx) = (3 —x*) = (=) =4 —x*
2 2
— 2 _ x3
= A—jiz(4—x )dx = [4x—?}72
(-9 - (84161 =%
(b) Limits of integration: letx =0iny =3—-x2
= y=31fy) —gy)=v3-y—(—/3-Y)
=23 -y
3 3 51 3
_ _ _ 2(3_ )32 _ «
= a=2f a-yay=-2 [ 3-pnay =2 [227] = (-4 -6+ 1Y
HOLEE:
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77. Limits of integration: y = 1 + \/;andy = =2/ /y=1+\/5
_ 2 _ _ g
:>1+\/f$,x7é0:>\/§+xf2:>xf(2—x)2 \ -~
= x=4—4x4+x = x2-5x+4=0
= x—4)x—-1)=0 = x=1,4 (but x = 4 does not
satisfy the equation); y = % andy =3 = % =3
= 8=x/x = 64=x> = x=4.
Therefore, AREA = A; + Ay: fi(x) — g1(x) = (1 +x1/2) —

! 1
= A1:j; (14+x12—2)dx = [x+%x3/2—x§2]0

X
4

4 5,14
=(1+2-H-0=THx -gpr =221 -% = A:):fl (2x712 — 3) dx = [4x1/?— Xg}l
_ 16 1y 15 _ 17. _ _ 37 17 _ 37451 __ 88 __ 11
=(4-2-1)—(4-4%) =4- 2 = Y Therefore, AREA = A; + Ay = 37 + ¥ =3T3 =88 _ 11

78. Limits of integration: (y — 1)) =3 -y = y? -2y +1
=3-y=y-y-2=0=(y-2Fy+1)=0
= y =2sincey > 0;also,2,/y =3 —y
= dy=9—-6y+y> = y’—10y+9=0
= -9y —-1)=0 = y=1sincey =9 does not
satisfy the equation;
AREA = A, + A,

fi(y) — gi(y) = 2,/y — 0 = 2y!/2

1 7 1
= Alzzfoyl/2dy:z[2y3£}0:g; fy(y) — g2(y) = B —y) — (y — 1)?

2
2
> A= [ By Ddy =By -y - do- Dl =(6-2-1) - (3-4+0)=1-14i=1T
Therefore, A; + A :%—i—%: % :%
79. Area between parabola and y = a’: A:2f0 (a? — x?) dx = 2 [a’x — 1 x°] ?):Z(a:”— %3) —0 =4

Area of triangle AOC: 1 (2a) (a?) = a%; limit of ratio = lin(1)+ ( 483)
a— 3

= 2 which is independent of a.

80. A= j;be(x) dx — j;bf(x) dx = 2j;bf(x) dx — j;bf(x) dx = j;b fx)dx =4

81. The lower boundary of the region is the line through the points (z, 1 — z>) and (z +1,1—(z+ 1)2>. The equation of this
(1-z+ 1)) - (1-2) (x

lineisy — (1 —2%) = P —1)=—-Q2z+1)x—-1)=y=—2z+ )x+ (" +z+1).
z+1
The area of theregion is given by f (1=x3) = (—(z+ Dx+ (22 +z+1)))dy

z+1

z+1
= j: (—x*+ (2z+ 1)x — 2> — z)dy = [—3x> + (22 + 1)x? — (2* + 2)x]

= (—%(14— )’ +102z4+1)(z+1)° — (2 +2)(z+ 1)) — (=12 + (22 + 1)22 — (2> 4+ z)z) = L. No matter where we

z

choose z, the area of the region bounded by y = 1 — x? and the line through the points (z, 1 — z*) and

(z+ ,1—(z+ 1)2) is always ¢.

82. Itis sometimes true. Itis true if f(x)  g(x) for all x between a and b. Otherwise it is false. If the graph of f
lies below the graph of g for a portion of the interval of integration, the integral over that portion will be
negative and the integral over [a, b] will be less than the area between the curves (see Exercise 71).
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83. Letu=2x = du=2dx = %du:dx;x=1 = u=2,x=3=u=6

3 6 6
J:¥%dx:J;E;@d@:iﬂﬂ%duzwmﬂ?:HQfFﬂ)

84. Letu=1—x = du=-dx = —du=dx;x=0=>u=1,x=1=u=0

j;lf(l —x)dx = j:of(u) (—du) = —flof(u) du = f;lf(u) du = j;lf(x) dx

85. (@) Letu=—x = du=—-dx;x=—-1 =>u=1,x=0=u=0
0 0 0 0 1
fodd = f(—x) = —f(x). Then J:]f(x) dx:j:f(—u)(—du):j: —f(u) (—du):fl f(u) du:—j; f(u) du
=-3
b) Letu=—x = du=—-dx;x=—-1 = u=1,x=0 = u=

0
feven = f(—x) = f(x). Then fjf(x) dx = flof(fu) (—du) = fflof(u) du = folf(u) du=3

0
86. (a) Consider j: f(x) dx whenfisodd. Letu = —x=du=—-dx = —du=dxandx=—-a=u=aandx =0
0 0 0 a a
= u = 0. Thus iuf(x) dx = f. —f(—u) du = f; f(u) du = —j; f(u) du = —j; f(x) dx.
a 0 a a a
Thus j: f(x)dx = j: f(x) dx + j; f(x) dx = —j; f(x) dx + j; f(x) dx = 0.

2
(b) j:msin x dx = [—cos X]i/fp = —cos () +cos(—5)=0+0=0.

87. Letu=a—x = du=—-dx;x=0 = u=ax=a =>u=0
= fﬂ fode fo o gy = f“ fa—wdu fa fla—x) dx
T Jo f)+fa—x) — J, fla—u)+f(u) — Jo fwtfa—u) — Jo f(x)+fa—x)

" fwax iawdx _ [Mforfax) qv - [ rete ey
= I+1I= fo a0 j; Otfa—x fo ) Fia—x) 9X = j; dx=[x]j=a-0=a

Therefore, 2l =a = 1= 5.

88. Letu= % = du=—-3dt = —Xiydu:%dt = —%du:%dt;t:x = u=y,t=xy = u= 1. Therefore,

Jora= b= [a= [fa= [a

89. Letu=x+¢c = du=dx;x=a—-c => u=a,x=b—c = u=>

ﬁjm+@mzﬁkwwzﬁwm@

90. (a) (b) .Y () = sinx ()

fx + 1) = (x + 1)2 os

1 1
f(x)-xz /
— + + X ¥ X 4 —
1

1 T o T e e e
- 1 -z z . 1 234 5617 8

2 .4 .4 s
l(x+2)-sm(x+2)
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91-94. Example CAS commands:

Maple:
f:=x ->x"3/3-x72/2-2%x+1/3;
g:=Xx->Xx-1;
plot( [f(x),g(x)], x=-5..5, legend=["y = f(x)","y = g(x)"], title="#91(a) (Section 5.6)" );
ql ==[-5,-2,1,47]; # (b)
q2 = [seq( fsolve( f(x)=g(x), x=ql1[i]..q1[i+1] ), i=1..nops(q1)-1)];
for i from 1 to nops(q2)-1 do #(c)

area[i] := int( abs(f(x)-g(x)),x=q2[i]..q2[i+1] );
end do;
add( areal[i], i=1..nops(q2)-1);  #(d)

Mathematica: (assigned functions may vary)

Clear[x, f, g]

f[x_] = x* Cos[x]

glx_]= x3 —x

Plot[{f[x], g[x]}, {x, =2, 2}]

After examining the plots, the initial guesses for FindRoot can be determined.
pts = x/.Map[FindRoot[f[x]==g[x],{x, #}]1&, {—1, 0, 1}]
il=NIntegrate[f[x] — g[x], {x, pts[[1]], pts[[2]]}]
i2=NlIntegrate[f[x] — g[x], {x, pts[[2]], pts[[3]]}]

il +1i2

CHAPTER 5 PRACTICE EXERCISES

1. (a) Each time subinterval is of length At = 0.4 sec. The distance traveled over each subinterval, using the
midpoint rule, is Ah = % (Vi + Vvip1) At, where v, is the velocity at the left endpoint and v;,, the velocity at
the right endpoint of the subinterval. We then add Ah to the height attained so far at the left endpoint v; to
arrive at the height associated with velocity v;,, at the right endpoint. Using this methodology we build
the following table based on the figure in the text:

t(sec) [0{04|08 (12| 16|20 |24 |28 |32 |36|40 |44 |48 |52 56| 6.0
v(ps) | O] 10 | 25 | 55 | 100 | 190 | 180 | 165 | 150 | 140 | 130 | 115 | 105 | 90 | 76 65
hdt)y [0 2 | 9 [ 25| 56 | 114 | 188 | 257 | 320 | 378 | 432 | 481 | 525 | 564 | 592 | 620.2

t(sec) | 64 | 68 |72 76 | 80
v(ps) | 50 | 37 | 25 | 12 0
h(ft) | 643.2|660.6 | 672 | 679.4 | 631.8

NOTE: Your table values may vary slightly from ours depending on the v-values you read from the graph.
Remember that some shifting of the graph occurs in the printing process.
The total height attained is about 680 ft.

(b) The graph is based on the table in part (a). h (feet)

700
600
500
400
300
200
100

of 2 4

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI
Chapter 5 Practice Exercises 311

2. (a) Each time subinterval is of length At = 1 sec. The distance traveled over each subinterval, using the
midpoint rule, is As = % (vi + vis1) At, where v, is the velocity at the left, and v;,, the velocity at the
right, endpoint of the subinterval. We then add As to the distance attained so far at the left endpoint v;
to arrive at the distance associated with velocity v;,, at the right endpoint. Using this methodology we

build the table given below based on the figure in the text, obtaining approximately 26 m for the total
distance traveled:

t (sec) 0 1 2 3 4 5 6 7 8 9 10
v(m/sec) | O 0.5 1.2 2 34 | 45 | 4.8 4.5 35 2 0
s (m) 0 025 | 1.1 27 | 54 | 935 | 14 |18.65|22.65| 254 | 264
(b) The graph shows the distance traveled by the N
moving body as a function of time for e
0<t<10. 20
15]
10
5]
a 2 4 6 8 ot
10 a 1 10 1 1 10 10 10
3@ Y F=1 2 a=5(-2)=—3 b > (b—3a)= > b -3 > a=25-3(-2)=31
k=1 k=1 k=1 k=1 k=1
10 10 10 10
© > (@+b—-D= > a+ > b— > 1=-2425—-(1)(10)=13
k=1 k=1 k=1 k=1
10 s 10 s 10 s
@ >, (i_bk): Y 3— > b=3(0-25=0
k=1 k=1 k=1
20 20 20 20 20
K=1 K=1 K=1 K= K=1
20 20 20
© 3 (3-%)=3 3-75 b=320-7(N=8
K=1 k= K=1
20 20 20
@ > (a—2)= > a-— 2=0-2(20)=—40
k=1 k=1 k=1

5. Letu=2x—1 = du=2dx = %du:dx;x:l = u=1,x=5=u=9

’ 1/2 121 1/219
fl(Zx—l)_/ dx:flu_/ (§du):[u/]1:3—1:2

6. Letu=x2—1 = du=2xdx = %du:xdx;x:l = u=0,x=3 = u=38

3 8
flx(xtl)“dx:fouw(%du): [Bu¥3]" =216 -0)=6

7. Letuz% = 2du=dx;x= -7 = u:—%,x:O = u=0

ficos (%) dx = fom(cos u)(2 du) = [2 sin u](;r/2 =2sin0—2sin(—3) =200—(-1) =2

Letu=sinx = du=cosxdx;x =0 = u:O,x:g = u=1

j:/z(sin x)(cos X) dx = folu du = [“;} (1) = %
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11.

12.

13.

14.

UPLOADED BY AHMAD JUNDI

(a) fif(x)dx:%fi?af(x)dx=%(12)z4 (b) j:f(x)dx:fif(x)dx—f:f(x)dx:6—4:2

© [ ewax=— [ e ax =2

© fl(%) dx = %fif(x) dx + %f;g(X) x=1©+12="2

(©) fzof(x) dx = —LQf(x) dx = —7

X2 —4x+3=0= x-3)x—-1)=0=>x=3orx=1;

Area:fol(x2—4x+3)dx—j:s(x2—4x+3)dx
— {X;_QX?HXH_ ["3—3—2X2+3x]j
_ Kg—z(l)?ﬁ(l)) —0}

— (5 202 +30) - (5 =202 +30))]
=G+ -[0-G+1)]=3

-2 =0 =4-x2-0= x= +2;

|

“[e-8) - (2 -] - [-8)-(-8)
- D-G-D-%

5-5x23=0=1-x=0= x= +1;
1 8

Area = 111(5 — 5X2/3) dx — j: (5 — 5X2/3) dx

= [5x — 3x%/?] 1_1 — [5x — 3x%/3] ?

[(5(1) = 3(1)3) — (5(=1) = 3(=1)*/3)]

= [(56)=3@7%) = (5(1) = 3(1)°7)]
=[2—(-2)] - [(40 —96) — 2] = 62

1—/x=0=x=1
area= [ (1= R de— [ (1- %) dx

= (= 3207 - [x - 300
(1= 300%) 0] = [ = @) - (1= 3077)]

|
- (-9 -1 =2

(d) Jiz(—w gx)dx = —7 j:zg(x) dx = —7(2) = —2m

@ Jy o= e o =jm = ® [ewax= [ eax— [ edc=1-2=—1
(d) fozﬁ f(x) dx = ﬁj:)zf(x) dx = /2 (1) = m/2
(e) j:[g(x) = 3fx)]dx = j:g(x) dx — 3f02f(x) dx = 1 — 37

3)'
2
2 f(x) =x —4x+3
1
X
\/23
-1
Y i) =1 /4)
0.5\
b 1 2 X
-0.5
=
y

No
W

easnsonsasasansssssonsansssnssll)
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15. f(x) =x, gx) = %, a=1,b=2 = A= fb[f(x) —g(x)] dx

S A L R R R R

16. f(x):x,g(x):ﬁ,a:l,b:Z = A:j;b[f(x)fg(x)]dx
R

=(5-2v2) - (-9 ==~

9 b 1 9 1
17. f(x) = (1 - /x)",gx)=0,a=0,b=1 = A:fa[f(x)fg(x)]dx:fo(lf\/;) dx:ﬁ(1—2ﬁ+x)dx

1
:fo (1—2x1/2+x)dx:[x—g—‘x3/2+’;—2];=1—;—‘+§=%(6—8+3):%

f(x):(l—x3)2,g(x):0,a:0,b:1 = A:j;b[f(x)—g(x)]dx:j;l(l—x3)2dx:j;](]—2x3—|—x6)dx

11
Xt X 11
_[X 2"’_7}0_1 s t73 =1

19. f(y) =2y, g(y) =0,c=0,d =3
= A= f [f(y) — g(y)] dy = J:, (2y* = 0) dy

3
3
:21; y dy =3 [y’]; =18

20. f(y) =4 —y% g(y) =0,c=-2,d=2

2

= A= [ty -ewidy= [ @4—y)dy

_ 32

=[], =26-9-32
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. . . . 2
21. Let us find the intersection points: yz = yt2

4
:>y2—y_2:0$(y—2)(y+1):O:>y:_1
ory=2 = c=-1Ld=21y =" g0 =¥

d ) 2
= A:fc [f(y) — g(y)]dy = 71(@47%)@
L[ 2 L[y Bk
=1 1(y+2_y>dy:z{7+2y—?}_l
A= -Gzl =3
22. Let us find the intersection points: # —= #
=2y -y-20=0 = (y-5y+4H)=0=y=—-4

ory=5 = c:f4,d:5;f(y):%l6,g(y):#

5

N A=fcd[f(y)—g(y)]dy=f74(¥_y24—_4) dy

:lfs(y—i—ZO—yQ)dy:l[ﬁ-i—ZOy—ﬁ}

4 J_, 4|2 3]y

= 1[(Z+100—12) — (%~ 80+ %]

=1 (3+180-63) =5 (3+117) = O+234) =32

23. f(x) =x,g(x) =sinx,a=0,b = g
b i
= A= f [f(x) — g(x)] dx = fo (x — sin x) dx

; /4
rremd = (58)

24, f(x) = 1,g(x) = [sinx|,a= —F,b=7F
b /2
= A= fa [f(x) — g(x)] dx = ﬁﬁ/z(l — |sin x|) dx

0 /2
= Lﬁ /2(1 + sin X) dx + j; (1 — sin x) dx

/2
:ZJ; (l—sinx)dx:2[)(—i—cosx]g/2
:2(%—1) =r-2

25. a=0,b =, f(x) — g(x) = 2 sin X — sin 2x

= A:j:(2sinx—sin2x)dx: [—2cos x + 2] |
=[2-(-D+i —(-2-1+ 1) =4

UPLOADED BY AHMAD JUNDI
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/3
= A= f /3(8 cos x — sec?x) dx = [8 sin x — tan x]i/j/?)

27. fy) = /vy, gy) =2 —y,c=1,d=2
:A:ﬁ[w%gmw:fhﬁ—@wﬂw

2 27 2
= (-2 ey =iy -2+ g
_ 827

—(3v2-442) - G-24 ) =4 VE-} =

28. f(y):6_y’g(}’)=y2,c:1,d:2 y
ﬁ”Azﬁ mw—gwmy:jk6_y_fﬁw

—l6 y Y32_1228 6_1_1 2
= y_7_?1_( —2-%)-(6-3-3)
_ 7,1 __24-1443 _ 13 1
=4-3+3 6 =%
| ' x
1 4 5
29. f(x) =x3 -3 =x*(x—-3) = f/x)=3x>—6x=3x(x—-2) = ' = +++ | ———— | +++
0 2
3 3
= f(0) = 0is a maximum and f(2) = —4 is a minimum. A = —f (x3 —3x%) dx = — [’% - xﬂ =—(&-27)=2
0 0
30. A:fo‘(alﬂ—xlﬂ)zdx:j;(a—Z ax1/2+x)dx:{ax—g—‘\/ax3/2+%2]z:a2—‘3—‘\/5-a a—|—%2

=a?(1-5+3)=506-8+3)=%

1
31. The area above the x-axis is A| = j; (y¥? —y) dy

3y%/3 y? 1 1 L.
=% -5 =1 the area below the x-axis is
0

2

0 2/3 Ay 0 1
A= [ PRy ay= [2E %] =

1

—_

[=)

= the total areais A; + Ay = ¢
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5m/4

/4
32.A:f0 (cosx—sinx)dx+f/4 (sin X — cos X) dx y

y=sinz

37/2
+ j; » (cos X — sin X) dx = [sin X + cos x]g/4
I,

+ [—cos X — sin x]f:/rf + [sin X + cos x]gyi

_ [(§+§)—(0+1)]+[(§+§)—(—72—72)]
+l1+0- (-2 -2) =2 -2=4/2-2 o3

X 1
33. y:x2+fl%dt:> $_2x+l= j%:z—é;y(l):ufl Ldt=1landy(l)=2+1=3

34, y:f:(l +24/sect) dt = g—i =1+4+24/secx = % =2 (3) (sec x)"/%(sec x tan x) = /sec x (tan x);
0
x=0 = y:f(.J (1+2\/sect) dt=0andx =0 = %zl—i—ZVsecO:S’

X S
35. y:j;S‘T‘”dtf3 = P=trix=5= y:fss%”dthZfS

X -1
36. y:filx/Z—sin%dt—i—Zsothat%:\/2—sin2x;x:—1 = y:jil V2 —sin?tdt+2=2

37. Letu=cosXx = du= —sinxdx = —du=sinxdx

f 2(cos x) /2 sin x dx = f 2u~Y2(—du) = -2 f u2du=-2 (”11’/2) +C = —4u'/? + C = —4(cos x)/2 + C

2

38. Letu =tanx = du = sec?x dx

f(tanx)_?’/2 sec2xdx:fu‘3/2 du=22 4+C=-2u24C= @or TC

-9 (tan x

39. Letu=20+1 = du=2df = }du=df

f[29+1+2cos(29+1)]d9: f(u+2cosu)(% du) :‘1;+sir1u+c1 = Mﬂin(zaﬂwq
= 0%+ 0 +sin(20 + 1) + C, where C = C; + 1 is still an arbitrary constant

40. Letu=20 -7 = du=2df = }du=4df

f(\/2}9—7w+25602(29—7r)) dﬁzf(\/i;—l—Zsec?u) (%du):%f(u_1/2+25602u) du

=1 (—) +1Qtanu)+C=u"?+tanu+C= 20— m"2 +tan(20 — ) + C
2

41. f(t—%) (t—i—%)dt:f(tQ—é)dt:f(tQ—M_Q)dt:?—4(%)+C=§+%+C
o fertac fezas [Grd)a= [ raha=Gro(G)re=-1-t+cC

43. Letu=2t*? = du = 3\/tdt = 1du=\/tdt
f\ﬂsin (2t3/2)dt = éfsinudu = —%cosu—l—C = —%COS(2t3/2) +C
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52.

53.

54.

55.

56.
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Letu:1+sec9:>du:sec9tan9d9:>fsecﬁtan@x/l—ksecﬂdﬁzful/Zdu:§u3/2+C 2(1+sec)’? +C
: 1
LL@%—@+ndx4ﬁ—mMJﬂ4:U&Jaf+ﬂm—ﬁqﬁ—x—w+ﬂ—m:6—emp46
: 1
ﬁ(&qu§+5nm:p¢—4§+5ﬂ0:puff4uﬁ+5an70:3
2
_ T R _
Jra=[arra=ai= (3 - (5 =2
27
fl X3 dx = [=3x 18] 2 = —327)7 18 — (=3(1)" ) = =3 (1) +3(1) =2
4
dt _ -3/2 1214 _ =2 _ (=2
flm_.t”_flt/dt [—2c712] | = Fo A=l
Letx—l—l—\/_ = dx—— u2du = 2dx—7;u:1 = x=2,u=4 = x=3

4 1/2 3
S s [orear = @)L= () - 1) =03 - V2= 1 (33 -2V2)
Letu=2x+1 = du=2dx = 18du=36dx;x=0 = u=1,x=1=u=3
Sy ot = J o= [ (07 = () - () =

Letu=7—-5r = du=-5dr = —i{du=dr=0=u=7r=1= u=2

1 1 2
[ st = [ a—sosar= [ uws (o) =~ L k)2 = 1 (V- ¥2)

Letu=1-x=du=-2x1dx= -3du=xdx;x=f=u=1- (%)2/3:%,x:1:>u:1—12/3:0
1 0

—1/3 (1 _ 42/3)\3/2 :f 3/2(_ 3 :{73 (g)]o 305210 3 ye/2 _ (_ 3) (3)%/2
S a-m o= [ wn e = [0 (9)]), = 3R, = - 107 - (-3 ()
_2V/3
= 160
Letu=1+9%* = du=36xdx = 3zdu=x*dx;x=0 = u=1,x=3 :>u:1—|—9(%)4:%

12 25/16 25/16

—3/2 _ w1 1 /97 25/16

f; x? (14 9x%) /dX=£ u 2 (& du):{%(—z)}l = [—FHu ]
_ 1 1/2 1 - _ 1
__ﬁ(le) ( ﬁ(l) 1/2)_9*0
Letu=5r = du=5dr = {du=dnir=0 = u=0,r=7 = u=>57

T S5t

: : u sin 2u] 97 T sin 107 sin 0 T
Josinsear= [ sinu) (3 au) = 23 - ) = (5 ity (0 50) = 3
Letu=4(—7 = du=4dt = du=dt;t=0 > u=—7,(=7 = u="1"

/4 3r/4

T _ _ sin2u]37/4 _ ™ sin (%) s sin (= 5)

St @ mya= [ o) (o) = 23 b S () 4 (g g
_ T 1 1
=5 6T %

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI
318  Chapter 5 Integration

m/3
57. fo secQGdﬁz[tanﬁ]g/gztangftanO: V3

3n/4
58. j;/4 csc? x dx = [—cot x]i%4 = (—cot ) — (—cotF) =2

59. Letu:% = du—ldx = 6du=dx;x=7 = u=¢2,x=31 = u=73

37 7r/2
L[; cot? 2 dx = e 6cot2udu—6f (csc®u— 1) du = [6(— cotu—u)];%—6( cotZ —7)—6(—cot I —1)
=63 —-27

60. Letu=§ = du=4df = 3du=df;0=0 = u=0,0=7 = u=13}

j;tan2§d9:j; (sec? ¢ — dﬂ—f 3 (sec u—l)du—[Stanu—Su]T/?’ [3tan§ —3(5)] —(Btan0—0)
=3y3—n7

0
_ 0 _ T\ _
61. j:msecxtanxdx—[secx]iﬁ/3—seCOfsec(fg)—172_71

3n/4
62. .[—./4 csczcotzdz = [—cscz]ijf =(—csc¥) —(—csc ) = —V2+v2=0

s

63. Letu:sinxédu:cosxdx;x:0$u:0,x:§:>u:1
/2 1
: 5/2] 1 5211 _ 9(1y5 5/2 _
J; 5(s1nx)3/2c:osxdx:f()5u3/2du:[5(%)u/2]0:[2u /2]0—2(1) 2 —2(0)°% =2
64. Letu=1—-x2 = du=—-2xdx = —du=2xdx;x=—-1 = u=0,x=1 = u=0

0

1
ﬁ]2xsin(1—x2)dx: , —sinudu=0

65. Letu = sin 3x = du = 3 cos 3x dx = 1 du—cos3xdxx———:>u—sm( %;):l,x:gﬁu:sin(%‘):—l
/2
1/215 sin43xcos3xdx:j: 15u* j: 5ut du = [u’]] :(—1)5—(1)5:—
2
66. Letu:cos(%)édu—f%sm()dxé 2du_s1n(§)dx;x:0:>u:cos(g)zl,x:%ﬂéu:cos(%):%

(S]]

JORESTORESICERES

/3 iy e s 1/2 » -3 1/2
fo cos™* (%) sin (3) dx = j: u(=2du) = [*2 (Tg)]l
67. Letu:1+3sin2x:>du:6sinxcosxdxé%du:3sinxcosxdx;x:0:>u:I,X:§éu:1+3sin2324

/2 4 4 . 4
3 sin X cos X 1 1 _ 1. .- _ |1 (w2 _ 4 _
N A Y ) N e ey

68. Letu:1+7tanx:>du:7secZXdX$%du:secZde;x:Oéu:1+7tan0:1,x:§
u=1+7tanj =8

/4 8 8 8
secx _ 1 (1 _ 1,-2/3 3y — |1 (u'/3 _13,1/318 _ 3 \1/3 _ 3 1n\1/3 _ 3
fo T 7unxes X = J, um(7du)—j: 7u /d“—{7(%)}1—[7“/]1—7(8)/ -3 =3
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Letu=sect = du=secfltanfdf;0 =0 = u=sec0=1,0=5 = u=sec =2

/3 /3 /3 2
tan 6 de — f sec 6 tan 0 de — sec  tan 0 _ f — f u—3/2 du
0 /2secf 0 sech+/2sech 0 ﬁ(sec 0)32 \/5 3/2 1

ﬁ[ﬁiéﬂf—[—fﬂf?ﬁ—f(—ﬁ):ﬁ—l

Letu = sin v/t = du = (cos /1) (1 t71/?) dt:“;\/dt = 2du—C°i/\/dt t=2 = u=sinl=1,

2 .
t=7 = u=sing =1

72/4 ‘ 1 o 1
fm’ Ct";nﬁdt: fmﬁ(zdu):zfmuWdu:[4\/6}1/2=4ﬁ—4\@=2(2—\/§)

1 1
70 @ av(h) = L (mx + b) dx = 1 [“‘T +bx} =} [(% +b(1)) - (@ +b(—1)>} =1@b=b
¢ 2 K m(k)> mi
®) avih) = [ mx+bydx= 4 (x| = (M52 4 b00) — (M52 4 b(—k)) | = 5 @bk =
3 3 3
72 @ yo =525 ), Vanax =1 [ V/Ex = B [2x02)) = L [2@p2 - 2072 = 4 (2v3) =
®) yu =15 j; ax dx = %fo(\/axlﬂ dx = ? 3 x3/2]3 = ? (3 @?%? - 2(00?) = X2 (3a,/a) = %a
b
73. ! = (x)dx = blfa [fx)] = ﬁ [f(b) — f(a)] = M so the average value of f’ over [a, b] is the
slope of the secant line joining the points (a, f(a)) and (b, f(b)), which is the average rate of change of f over [a, b].
b
74. Yes, because the average value of f on [a, b] is bla f f(x) dx. If the length of the interval is 2, thenb —a =2
b
and the average value of the function is % f f(x) dx.
75. We want to evaluate
1 365 365 ) 9 365 25 365
oo, fdx= %f <37sm[ﬁ(x - 101)] + 25) dx = 2% 51n[365( 101)] dx + 3¢ dx
Notice that the period of y = sin [ aos (X — 101)] is 2= = 365 and that we are integrating this function over an iterval of
365
365 365
length 365. Thus the value of 365f sin [365( —101) ]dx + 32655f dx is 365 -0+ 32650 365 = 25.
675 L7675
76. mfm (8.27+ 107°(26T — 1.87T%))dT = {8 27T + 2T — L57 LO
26(675 1.87(675) 26(20)*  1.87(20)°
= o <[8 27(675) + 2007 _ L8T07) } [8 27(20) + X _ 18700 D ~ 5k (3724.44 — 165.40)
= 5.43 = the average value of C, on [20, 675]. To find the temperature T at which C, = 5.43, solve
5.43 = 8.27 + 1075(26T — 1.87T?) for T. We obtain 1.87T? — 26T — 284000 = 0
2 — —
T 2 g N 202 23I0% g6 T = 38282 or T = 396.72. Only T = 306.72 lies in the
interval [20, 675], so T = 396.72°C.
71. % = /2 + cos?x
78. g—i = /2 +cos?(7x?) - {£(7x?) = 14x,/2 + cos’(7x?)
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d X
b= g () ta) - 5%

2 sec X
dy _ d 1 __d 1 _ 1 d __ _ secxtanx
dx T dx (ﬁecx t2+1dt> RS <j; t2+1dt> T sec’x+1dx (SCC X) T l+4sec’x

Yes. The function f, being differentiable on [a, b], is then continuous on [a, b]. The Fundamental Theorem of
Calculus says that every continuous function on [a, b] is the derivative of a function on [a, b].

The second part of the Fundamental Theorem of Calculus states that if F(x) is an antiderivative of f(x) on [a, b], then

b 1
f f(x) dx = F(b) — F(a). In particular, if F(x) is an antiderivaitve of v/ 1 + x* on [0, 1], then j; vV 1+ x*dx
— F(1) — F(0).

1 X . )
y= [VirRa= - [ViTea - g =g [ [ Vivea] - [ ViR - vie

0 €os X cos X cos X
— 1 _ 1 dy _ d 1 __ d 1
y_uﬁosx 1-¢ dt__‘l; 1-¢ dt = dx T dx |:_L/:) -2 dt:| T |:‘/(; 1-¢ dt:|

= = (o) (& os ) = = () (—sin ) = G = esex

We estimate the area A using midpoints of the vertical intervals, and we will estimate the width of the parking lot on each

interval by averaging the widths at top and bottom. This gives the estimate
Axl15- (0+236 + 36;54 + 54;51 + 51+249.5 + 49‘52+ 54 54+264.4 + 64.4-567.5 + 67.52—0—42)

A ~ 5961 ft>. The cost is Area - ($2.10/ft?) ~ (5961 ft?) ($2.10/ft?) = $12,518.10 = the job cannot be done for $11,000.

(a) Before the chute opens for A, a = —32 ft/sec’. Since the helicopter is hovering, vo = 0 ft/sec
= v= [ —32dt= 32+ vy = —32t Thens = 6400 ft = s = [ —32tdt = —16¢+ sy = — 168 + 6400.
Att =4 sec, s = —16(4)? + 6400 = 6144 ft when A's chute opens;

(b) For B, so = 7000 ft, vo = 0,a = =32 ftfsec? = v= [ —32dt=—32t+vy = =32t = s= [ —32tdt
= —16t> 4+ sy = —16t2 4+ 7000. Att= 13 sec, s = —16(13)% 4 7000 = 4296 ft when B's chute opens;

(c) After the chutes open, v = —16 ft/sec = s = f —16dt = —16t + sy. For A, sy = 6144 ft and for B,

sop = 4296 ft. Therefore, for A, s = —16t + 6144 and for B, s = —16t + 4296. When they hit the ground,
s=0 = forA,0=—-16t+ 6144 = t= % = 384 seconds, and for B, 0 = —16t + 4296 = t = %
= 268.5 seconds to hit the ground after the chutes open. Since B's chute opens 58 seconds after A's opens

= B hits the ground first.

CHAPTER 5 ADDITIONAL AND ADVANCED EXERCISES

1.

2.

1 1
(a) Yes, because j; f(x) dx = 1 fo Mx)dx=1(7) =1
1 1 9
(b) No. For example, | 8x dx = [4x? ) = 4, but [ v/Bxdx = 2v2 ()] (1) =W () = N2 2\ /s
2

(a) True: szf(x) dx = — j:f(x) dx = -3
(b) True: ﬁz[f(x) + g(x)]dx = ‘ﬂzf(x) dx + j:zg(x) dx = ﬁzf(x) dx + f2 f(x) dx + ﬁzg(x) dx=4+4+3+2=9
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(c) False: szf(x) dx =44+3=7>2= j:g(x) dx = j:[f(x) —gx)]dx >0 = j:[g(x) —f(x)] dx < 0.

5
On the other hand, f(x) < g(x) = [gx) —fx)] 0 = j: 2[g(x) —f(x)] dx 0 which is a contradiction.

3. y= %j; f(t) sin a(x — t) dt = ij; f(t) sin ax cos at dt — 1 j; f(t) cos ax sin at dt

= %f; f(t) cos at dt — == fo f(t) sinat dt = g—i = cos ax (j; f(t) cos at dt)

+ sinax (% j; f(t) cos at dt) + sin axj; f(t) sin at dt — <2 <dd—x j; f(t) sin at dt)

= cos ax f; f(t) cos at dt + % (f(x) cos ax) + sin ax fo f(t) sin at dt — < (f(x) sin ax)
= ¥ — cosax fo f(t) cos at dt 4 sin ax j; f(t) sin at dt. Next,

X

327?2' = —asin ax fo f(t) cos at dt + (cos ax) (% fo f(t) cos at dt> + a cos ax fo f(t) sin at dt
+ (sin ax) <d% j; f(t) sin at dt) = —asin ax j; f(t) cos at dt + (cos ax)f(x) cos ax

+ a cos ax j(; f(t) sin at dt + (sin ax)f(x) sin ax = —a sin ax fo f(t) cos at dt + a cos ax fo f(t) sin at dt + f(x).
Therefore, y” + ay = a cos ax j; f(t) sin at dt — a sin ax j; f(t) cos at dt + f(x)

+a? (% j; f(t) cos at dt — <= j; f(t) sin at dt) = f(x). Note also that y'(0) = y(0) = 0.

y y y
_ 1 d _ d 1 _ d 1 d .
4, x = L/; a0 dt = & (X) = L/; w dt = Ty |:L/:) W dt:| (%) from the chain rule
d d d? d
= 1=l (4) = &= VT4 Then 2 = & (VI+4y) = £ (VT+47) (&)

dy

-1/2 & 4y (V/1+4y? 2
=1(1+4y? / (8y) (g—i) = \/1(:432 = y\(/HJ;y._)y) = 4y. Thus STZ = 4y, and the constant of

proportionality is 4.

(a) j; f(t) dt = x cos 7x = %fo f(t) dt = cos mx — mx sin 7x = f(x?)(2x) = cos X — 7x sin 7X

5.
= f(XQ) — coswx—zzxsinﬂ'x' Thus, X=2 = f(4) — cosZTr—427rsin27T — %
) f(x)
® [ ea= (5], = 1000 = 1) =xcosmx = (f(x))" = 3x cos mx = f(x) = V/3x cos 7x
= f(4) = \/3(4) cos 4m = /12
6. fo f(x)dx = 4 & sina+ T cos a. Let F(a) = j; f(t) dt = f(a) = F'(a). Now F(a) = £ + 2 sina + I cos a
= f(a) =F(a=a+ §sina+ 3cosa— Jsina = f(%):%—i—%sin%—l—@cos%—gsing:%—1—%—’21:%
b b 71/2 N
7. j:f(x)dx:\/bQJr V2= f(b):%flf(x)dx:%(b2+l) (2b) = b = 1) = 2

8. The derivative of the left side of the equation is: % [ fo [ j; f(t) dt} du} = j; f(t) dt; the derivative of the right

side of the equation is: & [ fo f(u)(x — u) du] =4 fo fu)xdu— & ﬁ u f(u) du
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=4 [xfoxf(u) du
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— % j;xu f(u) du = j;xf(u) du + x {% j:f(u) du] — xf(x) = j;xf(u) du + xf(x) — xf(x)

= j; f(u) du. Since each side has the same derivative, they differ by a constant, and since both sides equal 0

when x = 0, the constant must be 0. Therefore, j; [ j; f(t) dt] du = j; f(u)(x — u) du.

0. %:3)(2—}—2 = y=f(3x2—|—2)dx:x3—|—2x—|—C. Then (1,—1)onthe curve = 134+2(1)+C=—-1 = C= —4

= y=x>+2x—4

10. The acceleration due to gravity downward is —32 ft/sec’ = v = f —32 dt = —32t + v, where vy is the initial

velocity = v=-32t+32 = s= f (=32t + 32) dt = —16t> + 32t + C. If the release point, att = 0, is s = 0, then
C=0= s=—16t>+32t. Thens =17 = 17 = —16t> + 32t = 16t> — 32t + 17 = 0. The discriminant of this
quadratic equation is —64 which says there is no real time when s = 17 ft. You had better duck.

3 0 3
11. ﬁgf(x)dx:£8x2/3dx+ﬁ —4 dx
= (3] 4

(0—2(=8)°%) +(—4(3)—0) = £ — 12

2 1 2
13. j;g(t)dt:fotdt+j: sin 7t dt

11 )
= {%}O—I-[—%cosm]l

(%—O)—l—[—%cosZW—(—%cosw)]
1
2

_2
m

14. j:h(z) dz:j:\/l—zdz+j:2(7z—6)‘1/3 dz
= [F3a -2+ [0z 67°],
=[50 =D = (=301 -0°?)]

+ [Z(72) - 6)*% — 2 (7(1) — 6)*/3]

R REE:

& & t

W

W=Vi-z w=(7z-6)1R
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15. f:f(x)dx:f;ldx—f— Lll(l—XQ) dx+f122dx y

= [xI7L + [x—*ﬂ 1_1+[2x]§ 2 e
— (-1 - (-2) + [(1 -5 -(-1- %)] +@-2m] 5
=1+3-(-3)+4-2=4% T

16. fjh(r)dr:fjrdrqtj;l(ler)errflzdr h h=1

1 -~
r 0 r"}1 2
- {7} ot {r—§}0+[r]1 he1-r2
_ (=1? 15 + > +
—(O—T>+((1—?)—O)+(2—l) - : xr
- prid1=
h=r

17. Ave.Value—biaﬁbf(x)dx—ﬁj;zf(x)dx—%[folxdx—i-flz(x—l)dx} :%[%2}1—1—% {X;—xr

0
(50 (5 ()
18. Ave.value:ﬁj;bf(x)dx:;—oj:f(x)dx:%{j;ldx+j;20dx+j:dx] =1[1-0+0+3-2]=12

19. Let f(x) = x° on [0, 1]. Partition [0, 1] into n subintervals with Ax = 1—;0 = 2. Then %, %, ..., are the
5

1
n
right-hand endpoints of the subintervals. Since f is increasing on [0, 1], U = ) (%) (%) is the upper sum for

00

0 =x on[0,1] = lim 3 (5)5(3) = tim L) () e+ ()] = limy [
- Joeo= 5],

20. Let f(x) = x3 on [0, 1]. Partition [0, 1] into n subintervals with Ax = 1-0 % Then %
3

5 see o

n

right-hand endpoints of the subintervals. Since f is increasing on [0, 1], U = Z (ﬁ) (%) is the upper sum for

j=1

0 =x'on (0,11 = tim 3 (1) (8) = lim [+ () 4+ (2] = lim, [E2 ]

P— n— oo n n n n— oo n
=
[ow- 5] -
= | x*dx=|%| =3
0 [4]0 4

21. Lety = f(x) on [0, 1]. Partition [0, 1] into n subintervals with Ax = 1;0 = i Then % 2. % are the

00

right-hand endpoints of the subintervals. Since f is continuous on [0, 1], Y f (ﬁ) ( %) is a Riemann sum of

j=

n— oo n

y=fooon (0,11 = tim 3 (1) (1) = tim L[f(2) +£(2) 4. +5(2)] = [ 00 0x

1
22. (@ lim  L[2+44+6+... +2n]= lim ;[F+5+2+... +3] :fozxdx:[x2]é:1,wheref(x):2x

on [0, 1] (see Exercise 21)
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5 5 L. 1

() lim o (1P 20 4.+ = lim {(%)1 + (%)1 +.+ (5)15} = j; x!% dx = {%] .= &, where

f(x) = x'® on [0, 1] (see Exercise 21)

1

(c) nlem % [sm + sin 27 + ... +sin ';—”] = j; sin n7r dx = [f%cosm(]é: 7%COS7T7 (7%0030)

= % where f(x) = sin 7x on [0, 1] (see Exercise 21)

1

@ lim b 10925 ) = (tim ) 2) ((lim (19428 4 4nt?]) = (lim 1) | x15 ax

=0 (%) 0 (see part (b) above)
(e lim o [1¥ 427 4. 40 = lim 5 [1°+2 + ... +n"]

1

= (n lim n) (n lim S +28 4+ n15]> = (n lim _ n) fo x1% dx = oo (see part (b) above)
(a) Let the polygon be inscribed in a circle of radius r. If we draw a radius from the center of the circle (and

the polygon) to each vertex of the polygon, we have n isosceles triangles formed (the equal sides are equal

to 1, the radius of the circle) and a vertex angle of 6, where 6, = 2—”. The area of each triangle is

A, % r* sin §, = the area of the polygon is A = nA, ’2 sin 6, = 7 sin 2—”

in (£ sin (£

©) lim A= lim % sin = lin S sin 3 = tim () S = () gm0 —
Partition [0, 1] into n subintervals, each of length Ax = ! with the points x) = 0, x; = 3, xo =2, ... ,x, =2 = 1.

The inscribed rectangles so determined have areas

f(xp) Ax = (0)2 Ax, f(x1) Ax = (1) Ax, f(xo) Ax = (2)* Ax, ..., f(x, 1) = (2=

) Ax. The sum of these areas

n n

is S, = (02+(ﬁ)2+(2)2+... +(";‘)2)Ax: (}l—§+ﬁ—§+ +@)%:n3+ 4.+ 0= Then

1
. o 12, 22 m-17%\ _ 2 B _ 1
pmy Sy = lim <n—3+n—3+~~~+T)—j;X dx = 5 = 3.

()
(b) g

(©) g
(d)

(e)

®

€3]

g(l f f(t)
ff d=-4@)1) = -1
L]: f(t) dt = —ff dt=—1(m2%) = -7
g ( ) =f(x)=0=x= 73,1,3andthe51gnchartf0rg’(x) =f(x)is | +++|———]|+++.Soghasa
-3 1 3
relative maximum at x = 1.
—1
g'(—1) = f(—1) = 2 is the slope and g(—1) = f] f(t) dt = —, by (c). Thus the equationis y +7 = 2(x + 1)
y=2x+2—-m.
g’(x) =f'(x) =0atx = —1 and g"(x) = f'(x) is negative on (—3, —1) and positive on (—1, 1) so there is an
inflection point for g at x = —1. We notice that g”’(x) = f’(x) < 0 for x on (—1, 2) and g"(x) = f'(x) > 0 for x on
(2, 4), even though g”(2) does not exist, g has a tangent line at x = 2, so there is an inflection point at x = 2.

g is continuous on [—3, 4] and so it attains its absolute maximum and minimum values on this interval. We saw in (d)
that g'(x) = 0 = x = —3, 1, 3. We have that

g(—3) = f f f(t) =27
I
:f] f(t) dt = —

4
_ _ 1 _ 1
fj;f(t)dtf—l-l—?llf—?

Thus, the absolute minimum is —27 and the absolute maximum is 0. Thus, the range is [—2, 0.
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™ X
y:sinx+j;cos2tdt+1:sinx —f cos2tdt+ 1 =y’ = cosx — cos(2x); when x = 7 we have

y =cosm —cos(2r) = —1—1=—2. And y’ = —sinx + 2sin(2x); when x = 7, y = sin7 + j; cos2tdt+ 1
—04+0+1=1.

R
N—
—~
Sl
—
ol
~
~—
I
=
\
e
\
)=
~
I
ol
+
ol
Il
>N

ﬂ@:ﬁ}du¢f®:§@@f<

0= Hdt = 00 = (k) (£ 6in0) — (b (& cos ) = 23 4+ s

€os X

1 + 1

T cosx sin X

<

1= s = 30 57) (3 ) - (i 57) (3 (1) =55

4

ﬂm:iLH«S—om:¢P@y:@+3x5—@+3»@yx+$)—xs-m(%):@+3x2—m—x6—x)
=6-x—x>-5x+x2=6-6x. Thusf'x) =0 = 6 —-6x=0 = x=1. Also,f"(x) = —6<0 = x=1givesa

maximum.
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CHAPTER 6 APPLICATIONS OF DEFINITE INTEGRALS

6.1 VOLUMES USING CROSS-SECTIONS

. 2
1. AX)= (dlaggnal)2 _ (Vx- (2—\/;)) =2x;a=0,b=4;

b 4
V=LA(X)dx=L2xdx=[x2]g:16

2

. 9 2 2 — 2412
2. A®X) = ﬂ(dlal’:etel‘)' _ 77[(27)(4)7)(] _ /.[2(1;)( N (1 _ 252 —|—x4);a: “1,b=1;

b 1 71
v=[Tawdx= | 7r(172x2+x4)dx:7r[xfgx3+"5i}

—

3. A®x) = (edge)? = {\/1 —x2— <—\/1 —x2)]2 - (2\/1 —x2)2:4(1 ~x%)ja=—1,b=1;

V:LbA(x)dx:fjA(l_x2)dx:4{x—X;}l_l:8(1_%):13_6

Vi@ (-vi-e)]

2 2

V:j;"A(x)dx:zf‘la—X?)dx:Z[x—%}71:4( ~h=3

4. A(x) = Wingonal? _

5. (@ STEP1) A=} (side) - (side) - (sin §) = } - (2v/sinx) - (2V/sinx) (sin 5) = /3 sinx
STEP2) a=0,b=r

STEP 3) V:LbA(x)dx:\/gj:sinxdx: [—ﬁcosx} V30 +1) =23

0
(b) STEP 1) A(x) = (side)? = (2 sin x) (2 sin x) = 4sinx
STEP2) a=0,b=r
b T
STEP3) V= [A dx= [ 4sinxdx=[-4cosx]] =8
6. (a) STEP1) A(x)= dameer” _ 1 (s x — tan x)2 =
=T [sec?x + (sec’x — 1) — 2 Sinx]
STEP2) a=—1,b=1

% (sec? x + tan? x — 2 sec X tan X)

/3
—m/3

STEP 3) V:j;bA(X)dXZ‘]::/;%(Zsec2x—1_2Sinx) dXz%[Ztanx—x+2(— 1 )]

cos? x cos X

i () (s )1
(b) STEP 1) A(x) = (edge)? = (sec x — tan x)? = (2 sec®x — 1 — 2 Sinx)
STEP2) a=—Z,b=1

STEP 3) V:fabA(x)dx:fjﬂ/;(Zse&x—1—M) ix=2(2/3-F) =4/3-%

cos? x

7. (a) STEP1) A(x) = (length) - (height) = (6 — 3x) - (10) = 60 — 30x
STEP2) a=0,b=2

b 2
STEP3) V= [A®dx= [ (60 —30x)dx = [60x — 15x’]] = (120 — 60) — 0 = 60
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(b) STEP1) A(x) = (length) - (height) = (6 — 3x) - (%6*3)) = (6 — 3x)(4 + 3x) = 24 + 6x — 9x>
STEP2) a=0,b=2
b 2
STEP3) V= [ A dx= [ (24 +6x —9x2)dx = [24x +3x? — 3x’] = (48 + 12— 24) — 0 = 36
8. (a) STEP1) A(x) = }(base) - (height) = (\/x — %) - (6) = 6,/x — 3x
STEP2) a=0,b=4
° t e 12 3/2 _ 3.214
STEP3) V= ['Amdx= [ (6x'2 —3x) dx = [4x¥/2 — 3x2]; = (32 -24) ~0=38
. _x\2 _x3241
(b) STEP 1) A() = 4 - m(fmeer)? — L (VA28)7 = 2 200 i (x = 02 4 1)
STEP2) a=0,b=4
b 4
STEP3) V= ["Acodx= 5 [ (x — ¥ + 1) dx = [1 — 2R 4 L= 58— % 4 19) —5(0)= 5
2
9. A(y) = § (diameter)* = % (\/§y2 - 0) =3Iy y
d 2
c=0d=2%V=[Awdy= [ =y dy 2
5\ 7 2 . e y=2
- {(%ﬂ) (Y?)}Ozg(zo_o):gﬂ 1} L
1 diameter of circle
0.5
[ Anans ARNRF JNAY SRS JAAS [ ERR
2 2
10. A(y) = L eg)leg) = 5 [/1—y2— (V1 -y})] =1 (2V/1—y?) =2(1—y});c=—1,d=1
d 1 71
v=[Apdy= [ 201~ 2)dy:2[y—y¢} PEEUEDEE
11. The slices perpendicular to the edge labeled 5 are triangles, and by similar triangles we have 2=z :> h= 3b The
equation of the line through (5, 0) and (0, 4) is y = —2x + 4, thus the length of the base = —%x —|— 4 and the
height = 3 (—3x 4+ 4) = —3x 4 3.Thus A(x) = £ (base) - (height) = 1 (—%x +4) - (—3x+ 3) Sx2—L2x+6
b 5
and V= [Ax)dx= [ (&2~ 2x+6) dx= [Zx* — & +6x]; = (10— 30+ 30) — 0 = 10
12. The slices parallel to the base are squares. The cross section of the pyramid is a triangle, and by similar triangles we have
b3 o b=Ih Thus A(y) = (base)’ = (3y) = 2y = V= [ A dy = [ Sy?dy= [3y)]S=15-0=15
13. (a) It follows from Cavalieri's Principle that the volume of a column is the same as the volume of a right

prism with a square base of side length s and altitude h. Thus, STEP 1) A(x) = (side length)? = s?;
b h
STEP2) a=0,b=h;STEP3) V= [ A®dx = [ s?dx = s*h

(b) From Cavalieri's Principle we conclude that the volume of the column is the same as the volume of the prism
described above, regardless of the number of turns = V = s’h
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15.

16.

17.

18.

19.

20. Rx)=x% = V= fOZW[R(x)]? dx = wf:(xf‘f dx

UPLOADED BY AHMAD JUNDI

Section 6.1 Volumes Using Cross-Sections 329

1) The solid and the cone have the same altitude of 12.

y
2) The cross sections of the solid are disks of diameter 3
x — (3) = 3. If we place the vertex of the cone at the i y=z/4
origin of the coordinate system and make its axis of
symmetry coincide with the x-axis then the cone's cross 1

sections will be circular disks of diameter

i (f %) = 3 (see accompanying figure).

3) The solid and the cone have equal altitudes and identical

parallel cross sections. From Cavalieri's Principle we K )
conclude that the solid and the cone have the same a
volume. NOT TO SCALE

2 512

RO =y=1-3 = V= [rRoF o =nf (=3 = n (1 -xe §) ac=r s 5 4 ]

—r@-+ )= %

._l

0

-8 =67

B [SN)

2 2 2
Ry)=x=% = V= [ aRe)Pdy=x (3)dy=n) Iy2dy=n[3y’] =7

R(y)ztan(%y);uz%y = du=7dy = 4du=7mdy;y=0 = u=0,y=1= u=7;

V= j;l 7[R(y)]* dy = wj;l [tan (% y)]2 dy = 4‘]:/4tan2u du = 4f(:/4(—1 +sec?u) du = 4[—u + tan u]g/4

=4(-2+1-0)=4—7

/2
R(x) = sin x cos x; R(x) =0 = a = 0andb = 7 are the limits of integration; V = fo 7[R(x)]? dx
/2 w2 . 5
:7rf0 (sinxcosx)zdx:wﬂ) %dx;[u:Zxédu:2dx:>%:%;x:Oéu:O,

x=% = u=n - V=rf Lsinfudu=7%[4 Llsin2]]=2[(Z-0)-0]=1

Rx)=x> = V= j: RGP dx =7 j:(XZ)Q dx y

2 572
=7TfX4dX:7T[%} :3%”
0 0

&

y=x2 //%//;

> 12
=7 f xSdx =7 {"7} = 1%
0 0
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21. Rx) =9 - x2 = V:f;w[R(x)]Q dx:ﬂfj3(9fx2) dx
:w{9x—§—‘°’}::2w[9(3)—§] —2.7-18=36n

2. Rx) =x —x2 = V:folw[R(x)]2 dx:wfol(x—x?)2 dx

3

1 25 511
ZT&"[(‘)(X2—2X3+X4)(1X=7T[%—%-ﬁ-%}o
r (il = 5001510 = 5

/2 /2
23. R(x) = y/cosx = V = j; 7[RX)]? dx = 7Tj(‘) cos x dx y

=rlsinx]]?=x(1-0)=7

e ;/1 /f%’ »
3

0 x/2

/4 /4
24. R(x) =secx = V = fimﬂ[R(x)]z dx = fimsecQ x dx

= 7 [tan x] ”/;*/4 — 7l — (—=D)] =27

/4
— _ 2
25. R(x) = \/5 —secxtanx = V= ‘/; m[R(x)]® dx y y=12

m Z
T f/A(\/E—secxtanx)de ¢

0
/4
™
0

T (2 — 24/2 sec x tan x + sec? x tan? x) dx

s

0
(f /42 dx — 2\/5 j:msec X tan x dx + fom(tan x)?sec? x dx)

([2)(]g/4 —24/2[sec x]g/4 + [@} Z/4>
w[(g—o) —2\/§<\/§—1) +§(13—0)} :W(%+2\/§—13—1}

Yy =secrtanx

™
X

0.6

oAt
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26. Rx) =2~ 2sinx =2(1 —sinx) = V= [ mREJ? dx
=7 j:/24(1 —sin x)? dx = 47 j:/z(l + sin? x — 2 sin x) dx
:471:/2[1—1— %(1 —cos2x)—2sinx] dx
:4#](‘)”/2(% — cos2x 72sinx)

2
: /2
:47[%)(—%—}—2005)(]0/

=47 [(3F —0+0) —(0—0+2)] = 737 — 8)

27. Ry =V5y? = V= [ aRe)Pdy =7 [ 5y'dy y
=y’ =7l — (=] =2n

//;f},-’})};f//}:‘ //}WIA’”//" =

2 2
8. Ry =y = V= [ rRyPdy=x[ y*dy

- [2): =

/2
29. R(y) = /2sin2y = V= [ n[Ry)>dy
T2 w/2
= rfo 2sin 2y dy = 7 [— cos 2y],

=7n[l-(-1D] =27

30. R(y) = y/cos 5 = V= fj;W[R(Y)]2 dy

- fozcos (H)dy =4[sin )", =40 (-] =4

3 3
3L RW) = 27 = V= [ aROPdy =4n [ L dy v
3
= 4r {*y%l} =dr[=d = (-] =3n

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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1 1 _
2. RN =22 = V= [ aRePdy=xf 2y +1) " dy;
u=y?>+1 = du=2ydy;y=0 = u=1,y=1 = u=2]
s Venflutasn [ e r b o) =3
33. For the sketch given, a = — g, b= %, RX)=1,rx) =

UPLOADED BY AHMAD JUNDI

z=2y/(y* +1)

cosx; V= j;bw ([RX)* = [r(x)]?) dx

/2 /2
= f,ﬁ/zﬂ(l —cos x)dx = 27rf0 (1 —cos x)dx = 27[x — sinx]g/2 =27 (g — 1) =m?—2r

34. For the sketch given,c = 0,d = 7;R(y) = 1, r(y) = tany; V = f

—7Tf l—tanydy—wf

35. 1(x) = xand R(x) = 1 = V = fol 7

:j;]ﬂ'(l—XQ)dX:TI'[X—X;};

—sec’y) dy = 7[2y —

[R(X)I* —

36. 1(x) = 2¢/Xx and R(x) =2 = V = J;]Tr([R(X)]Q—

1 ol )
S (474x)dx:47r[xf5}0:4”(1,,):27r

37. r(x) = x>+ land R(x) = x + 3
= V= [ 7 (RO = [r01) dx
:wf] [(x—|—3)2 (x4t 1)2} dx
= [ 16+ 6x+9) — (xT+ 2 + 1) dx

— P2
—7Tf (—x* —x* 4+ 6x + 8) dx

[r(x)]?) dx
—li-h-0-%

tan y]g)

[r()]?) dx

(RYP* —

(s

[r(y)I*) dy
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38. r(x) =2 — x and R(x) = 4 — x?
= V= [ (RO - [r0P) dx
—xf [(4 ) o2- x)ﬂ dx

=7 [ 1016 = 8x2 + xt) — (4 — dx +x?)] dx

)

m ) (124 4x —9x* +x*) dx

(24+8-24+2) — (-12+42+43-1)] == (

ﬁ{12x+2x2—3x3+"5—5}2
[

39. r(x) = sec x and R(x) = \/5
= V= fj:;w([R(x)]Q — [r(0)12) dx
=7 f;/;(Z — sec?x) dx = 7[2x — tan x]

(G-~ (5+1)] =rt-2)

/4
—/4

X
40. R(x) = sec x and r(x) = tan x
- V= fol T (RGP — [r(0]2) dx
:wj: (sec’ x — tan® x) dXZTI‘j;lldX:TI'[X](l):ﬂ'
X
41. r(y)=landR(y) =1+y Y
= V= [ 7 (ROE - KpP) dy . an @
. . %/;/;I///,Z///V
:Wfo [(1+y)2—1]dy:7rf0(1+2y+y2—1)dy %f//////’%f///
] 2 2 y]! 1) _ 4n y=x-1
:Wfo(Zy—i—y)dy:W{y +7}0=7T(1—|—§)=?’ /.
' X
| (1,0) N
42. R(y) = landr(y) = 1~y = V= [ 7 (RGP — [xy)]?) dy y
1 1 (1,1)
:Wfo [1—(1—y)2]dy:7rf0 [1—(1—2y+y*)]dy 4

i

" ”
y=1-x %

:Wj;l(Zy—yQ)dy:W[yQ—gj}l—w(l—%):27”

0
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43. R(y) =2andr(y) = \/§
= V= [ r(ROP - 1)) dy 4

2

4 Py 4
—rf, 4-ydy=n[ay- %] =n16-8) s yx2

2

44. R(y) = v/3and r(y) = /3 — y2

y
V3
= V= [T r(ROP - [y dy V3 gz
3 3 W;W
:Wﬁ)\[[S—(3—y2)]dy:7rj;\[y2dy x2+y2=3
57 V3
= {YT] = 7r\/§ %
’ 5

45. R(y) = 2and r(y) = 1 + \/§
= V= ['r (RGP - [P dy
= f) [a- 1+ )] ay
:wfol (4-1-2/y—y)dy
—n [ 3-2/5-v)dy
o]

:ﬁ(g_%_%)zﬂ(lsfﬁsfz):%

46. R(y) =2 -y andr(y) = 1
= V= [ r (RO - o)) dy
=, (2= v = 1] dy
= [ (4 -4y 4y2 1) dy
=7 [ (3 4y +y%) dy

537 1
rfyoatean] sx Gy =¥

47. () 1(x) = \/xand R(x) =2
= V= [ 7 (ROP - [r0]?) dx

2

2 o
274 b
=4X
(b) r(y) =0and R(y) = y? y=v

7

= V= [Tr (R - (1)) dy | —x
2 s12
=), vy =nl3] =%

© r(x)=0andR(x)=2—/x = V= fﬁ (RGP — [r(0P) dx = 7 fo o e
- ﬂ-;f: (4 - 4\/§ + X) dx =7 [4)( _ SX;/Z .

4
20 64 | 16\ __ 8m
+%}0—W(16—?+7)—§
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48. (a)

(b)

49. (a)

(b)

©

50. (a)

(b)
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) =4y adRy) =4 = V= [ r(ROP - P dy =7 [ [16- (4 -y>)’] ay

2 2 512
:wfo (16 — 16+8y2—y4)dy:77f0 (8y? — y?) dy:w[§y3— y?]
r(y) =0andR(y) =13
= V=" r(ROPE - [r)P) dy
—ﬂ'f (1-3) dy—Trf (—y—l—y;)dy

2

=rly- g ) =re-te ) =%
r(y)=1landR(y) =2—1%

:>V:j;27r([R(y)]2 [r(y)1?) y—ﬂ'f{ -3) —1}dy:7rj;2(4—2y+y4—2—1)dy

:ﬂf; (3—2y+y72)dy=7r[3y y2 4+ ]0:77(6_4+%):7r(2+%)z%w

r(x) =0and R(x) = 1 — x?

= V= [ 7 (RO - [r0P) dx
:T(fil (1—x?%) dx:ﬂfj](1—2x2—|—x4)dx
:w{x—%’é—i—xﬂ!:%(l—%—ké)

=2m (B59) = &

rx)=landRx) =2 —x2 = V = f (RGP — [r(012) dx = 7 fll { x2)? — 1} dx

;11
:ﬂ'fil(4—4x2—|—x4—l)dx:wf7|(3—4x2—|—x4)dx:7r{3x—%x3+"5—0}_1:27r(3—%+%)
=3 45-20+3) =3~

fx)=14+x2andR(x) =2 = V = f (RGP — [(x)T) dx—wfll{ —I—X)]dx

51
_wf 4—1-2x%—x% dx:wfil(3—2x2—x4)dx:7r{3 —%x3—%}71:27r(3—%—%)
= 2(45-10-3)= %=

r(x) =0andR(x) = — Ex +h

= V=[5 (ROP - [P dx
—wf —Bx+h ? dx

—wf (h—2 %X%—h?)dx

hQ{W———FX] =7h* (2 —b+b) = hzb

ry) =0and Ry =b(1-%) = V= [ w(ROE - k) dy = b2 [ (1-1)*dy
— b2 [ (—Fy Y—z)dy—wa[y——+3hz}h—wb2(h—h+g):%Qh
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51. R(y) =b++/a>2 —yZand r(y) = b — y/a> — y2 Y

= V= f (R — [x(y)]?) dy r(y
[ [+ V) (- V) ay /-
—r [ v/ i ay = abr [ mdy

= 4br - area of semicircle of radius a = 4br - = 2a’br?

52. (a) A cross section has radius r = /2y and area 7r> = 27y. The volume is fd 2rydy = T [y? ]8 = 29m.

dV _ __dv  dh dh dh _ _1 dv
(b) V(h) = [A(h)dh, 50 & = A(h). Therefore &¥ = &V . dh — A(h) . &b 5o &b — L. 4V,
For h = 4, the area is 27r(4) =8m,so % = L guss _ 3 unit

h—a h—a
53. (a) R(y) = 212—y2:>V:7rf7a (a2 —y?) dy = [ay——} ) 7r[a2h—a3—@—(—a3+a3—3>}

= [a?h — 4 (¥ — 3n%a+3ha® - a¥) — §] = (ah— 1§ + ha— hat) = =D

W

(b) Given § = 0.2 m%sec anda =5 m, find §| . From part (a), V(h) = w 57h? — ”hg

dV 2 &V _ 4V _ dh | _ 02  _ 1
= G = 10rh —7h? = ¢ = ¢ - ¢ =7h(10 —h) ¢ s = F(I0=F) — QomE) To07 M/sec.

54. Suppose the solid is produced by revolving y = 2 — x about
the y-axis. Cast a shadow of the solid on a plane parallel to 2
the xy-plane.
Use an approximation such as the Trapezoid Rule, to

estimate [ w[R(y)]’ dy~27r< ) Ay.

55. The cross section of a solid right circular cylinder with a cone removed is a disk with radius R from which a disk of radius
h has been removed. Thus its area is A; = 7R? — th? = 7 (R? — h?) . The cross section of the hemisphere is a disk of

2
radius v/R? — h2. Therefore its area is Ay = 7 (\/ RZ — h2) = 7 (R? — h?). We can see that A| = A,. The altitudes of

both solids are R. Applying Cavalieri's Principle we find
Volume of Hemisphere = (Volume of Cylinder) — (Volume of Cone) = (7R*)R — 37 (R?)R = 3 7R%.

56. R0O = V36— x2 = V= [ mRooP dx =7 [ 2 (36 — x?) dx = 4f (36x2 — x*) dx
= & [12¢ - g}z (1260 - §) = 75 (12 3) = (497) (©5%) = %7 cm®. The plumb bob will

weigh about W = (8.5) (

) ~2 192 gm, to the nearest gram.

=7

7 7 3
57. R(y) = /256 —y? = V= [ aRpPdy=n[ (256 -y>)dy=n {25631 - %] i
=7 [@56)-7+ 5 — (@56)-16) + 1) | = 7 (T +256(16 - 7) — 1) = 10537 cm’ ~ 3308 o’
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58. (2) R(x) = | = [ [ReOPdc =7 (c—sinx?dx=m[ (¢~ 2¢sinx+sin?x) dx

:wj;ﬁ(CZ—chinx—i—l*gﬂ) dx:ﬁj:(CZ-F%—chinx—%) i
:W[(c2+%)x+2ccosxf%}g:F[(c%Jrngch) —(0+2c - 0)] —r (4T —4c). Let
V(c) = 7 (¢*1 + § — 4c) . We find the extreme Values of Vo) L' =mQRer—4)=0 = c=2 is a critical

point,and V (2) =7 (£ 4+ 7 — &) =7 (2 — %) = T — 4; Evaluate V at the endpoints: V(0) = and

T 2 m

Vi) =r(3nr—4) = %2 — (4 — m)m. Now we see that the function's absolute minimum value is 7 — 4,
taken on at the critical point ¢ = 2. (See also the accompanying graph.)

(b) From the discussion in part (a) we conclude that the function's absolute maximum value is T taken on at
the endpoint ¢ = 0.

(c) The graph of the solid's volume as a function of c for
0 < c¢ < 1isgiven at the right. As ¢ moves away from
[0, 1] the volume of the solid increases without bound.
If we approximate the solid as a set of solid disks, we

can see that the radius of a typical disk increases without

bounds as ¢ moves away from [0, 1]. U 1

59. Volume of the solid generated by rotating the region bounded by the x-axis and y = f(x) from x = a to x = b about the

b
x-axisis V = j; 7[f(x)]?> dx = 4, and the volume of the solid generated by rotating the same region about the line
b b .
y = —1isV = j 7T[f(X) + 1]2 dx = 8. Thus j; TI'[f(X) + 1]2 dx — j; ﬂ_[f(x)]z dx — 87 — 47
b ) N ) i
= Tl'j; (F0)1? 4 2f(x) + 1 — [f()]?) dx = 47 = f 2f(x) +1) dx = 4 = 2fa f(x) dx + f dx — 4
b b
= [Tt dx+ Sb—a) =2 = [ fex) dx = 4=t

60. Volume of the solid generated by rotating the region bounded by the x-axis and y = f(x) from x = a to x = b about the

b
x-axisis V = j; 7[f(x)]? dx = 6, and the volume of the solid generated by rotating the same region about the line
b b b
y=-2isV= [ mlf(x)+ 22 dx = 10m. Thus [ =[f(x) + 212 dx — [ wlf0) dx = 107 — 67
b b b b
= 7 [ (01 + 460 + 4 — [f02) dx = dr = [ (400 +4)dx=4 =4[ T dx+4 dx=4
b b
= [t dx+(b-a)=1= [fdx=1-b+a

6.2 VOLUME USING CYLINDRICAL SHELLS

1. For the sketch given,a = 0,b = 2;

2 2
V= [Tor (e (wen ) ax = [lomx (14 %) ax=2r [ (x+ ) ax=2r |5

=2r-3 =067

o,
_|_
.—|><’;
—
N
Il
[\®)
3
—~
IR
_|_
=
SN—

2. For the sketch given,a =0,b = 2;
2 2 2
V= [T () ) (i) ax = Jo2mx (2= %) dx=2n [ (2x = %) ax =2r [x* = %] = 24— =6r

3. For the sketch given,c =0,d = \/5;

V2 V2 "
V= f 27r rzg?llllg (hsehi?}lxt) dy = j; 27y - (y3)dy = 27rj; y3dy =27 [yz} =27
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4. For the sketch given,c = 0,d = \/g;

d S s V3 V3 4 -
V= j; 27 (ml;f}]ls) (h!;?llt) dy = j; 21y - [3— (3 —y?)]dy =27 j; y? dy = 27 {yj] . = 97

5. For the sketch given,a =0,b = \ﬁ;
b V3
V= [ () (k) ae= ) 2me- (VA HT) a
[u:x2+1 = du=2xdx;x=0 = uzl,x:\/§ = u:4]

Ve[ udu= g [2u)t = T @2 1) = (2) 8- 1) = M

6. For the sketch given,a = 0,b = 3;
b hell hell : x .
V= j; 2m (rid?us) (hseith) dx = j:) 2mx (\/xg;j) dX’
u=x+9 = du=3x*dx = 3du=9x>dx;x=0 = u=9,x=3 = u=36
36
— V=2r [ du=6r [2u2] 3 = 127 (v/36 - /) = 36r

7. a=0,b=2;
b 2
V= [lom () (e ) = [ 2mx [x = (< 3)] dx

2 2
:j;27rx2~%dx:7rf0 3x2dx:7r[x3]g:87r

,,g 2

8. a=0,b=1;
V= [lar () () ax = [ 2nx (2x - 3) dx

1 5 1
Iﬂ'j; 2(%)dx:7r6f3x2dx:7r[x3](l):7r

X
9. a=0,b=1;
b 1
V= [l () (e ) ax = [ 2nx 2 - %) - ) dx
! 1
:27rf0 (2X_X2—X3)dX:27T|:X2—%3_Z_A:|O
“an(1- 4§ =2 () = = ¥
X
10. a=0,b=1;
b She. she. !
V= [l () () ax = [ 2mx (2 %) - ) ax
1 1
:27rf0 x(2—2x2)dX:47rf0 (x — x%) dx
1
x2 x! 1 1
:47T|:§7Z]O:47T(5—Z):ﬂ'
X
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11. a=0,b=1;
V= [Ton () () ax= [ 2ex [ - @x - 1) dx
:27rf0 3/2*2X2+X)dXZZW[%X5/2*%X3+%X2]1

0
=am(5-34y) = (B ) =

12. a=1,b=4;
v= [lar () () dx = [l2mx (3x7177) dx
= 37rf; x1/2dx = 37 [% x3/2]  =2m (432 - 1)
— 278 — 1) = 147

sinx, 0 <x<7m . .
= xf(x) :{ — © ;since sin 0 = 0 we have

. sinx <
13. (a) xf(x):{X xo 0<x<m o

X, x=0

i <
xf(x)—{smx’ O<x<m = xf(x) =sinx,0<x <7

sinx, x =0

(b) V= f 21 r;':ﬁ:]lg (;;;:J dx = j;ﬁ27rx - f(x) dx and x - f(x) = sin x, 0 < x < 7 by part (a)

= V= 27rf0 sin X dx = 27[— cos x]] = 2m(—cos ™ + cos 0) =

2
= xg(x) = { tan )(()’ ?{i )(() < 71-/4; since tan 0 = 0 we have

_tanx 0<X<£
14. (a) xg(x) =<~ — 4
(a) xg(x) { o a0

2 <
xg(x) = {tf;n;); Oxixo— /4 = xg(x) =tan’x,0 < x < /4

/4
(b) V= f 2 (Shell ) ( shell ) dx = j; 27x - g(x) dx and x - g(x) = tan’x, 0 < x < 7/4 by part (a)

rddlus height

2

/4 5
= V:27Tf0 tanZde:Zﬂ'fO (sec’x — 1) dx:27r[tanxfx]g/4:27r(lf§) = -

15. c=0,d=2;
V= f 27 (i) (hsehi?ﬁt) dy= [ “2my | (/Y — (=y)] dy
— o [ ( 3/2+y)dy—2w[2y52+Y]0
2 [1(vV2) + 3] =2 (M4 1) = r6n (£ +
116—5”<3ﬁ+5)

W=
N—
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16. c=0,d =2
d . S 2
V= [am () () dy = [, 2ny y? = (~y)ldy
23 2 vov]? 2,1
=or [ (P +y)) dy =2n % +g}0:16ﬂ(1+5)

= 16 (3) = %

X
17. c=0,d=2;
d shell \ ( shell 2
V= f; 27 (adius) (height) dy = j; 2my (2y — y*)dy
2 3 172
o[, 0y -y dy=2n [3 %] = (§ - )
327 8T
—r(i-1) ==
X
18 c=0,d=1; ,
d hell hell !
V= j: 2 (rztd?us) (hseiZhl) dy = L 27Ty (2y - y2 - Y)dy 14
1 1 7,
=)yl -y dy =2m [, (7 — v dy x=y
3 ak 1 1 s ,_ 2
:27T[y? —YIL]:%(S—Z)ZE x=2y-y
— X
1

19. ¢c=0,d=1;
d 1
v=[om () () ay =2x [ vly - (-y)dy

1 - 1
=27rf0 2y dy =yl =4

20 Cc = O’ d = 2’
V= j;dz'ﬂ, (r:i?:}s) (hsgzlﬁt) dy = j: 2 y(y — %)dy

2 9 x 2 -
= [, ey =510 = ¥

2l. ¢c=0,d=2;
d She. she. 2
V= jl 2 (rzllcliiils) (hgliglkllt) dy = j; 271'y [(2 + Y) - )/2] dy
: 2 3 I A 2
zzwfo (2y+y —y)dy=27r[y +;—1]0
=2r(4+58-18) =748 +32-48) =1
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22. ¢=0,d=1;
1
V= [lom () (Y ay = [ 2ny (2 - ) -y dy

1
=27 2y—y2—y3)dy=2ﬁ{2—£—yﬂo

:27r(1————) —I(12-4-3)=

23. (@) V= [ 27 () (;;;‘h‘t)dx - 1:27”( (3x)dx = 67rf02 «2 dx = 27 [x’] = 167
(b) V= f 2 () (e ) ax = [2m (4= %) (3x)dx = 67 [ (4x — x2)dx = 67 [2¢ — 1] 2 = 6m(8 — £) = 32r
© V= f 27 (s (hﬁé&)dx = f227r (x+ 1) (3x)dx = 67Tf2 x* 4 x)dx = 67 [1x> + %xz]i = 6m(3 +2) =28
@ V= [Tom () (ot )y = [fory 2= Ly)dy =2n [ (2y — 1y?)dy = 27 [y? — 1y*] § = 2n(36 — 24) = 24
@ V= [lom () (e Yay = [T (7 —y) (2 - by)dy =2 [ (14— By + Ly?)dy = 2 [14y - Ry + y]

= 27 (84 — 78 4 24) = 60r

® f (o) (fﬁ;&)dy— f 2r(y+2) (2~ )dY—zﬂf 444y — by?)dy = 21 [dy + 2y? — 1y?]°
— 2m(24 + 24 — 24) = 487

2 2
24. (@) V= fz (hell ) (;;;;gt)dx:ﬁzm(s—x3)dx:zwfo (8x — x*)dx = 27 [4x2 — 1x°] ) = 27 (16 — 2) = %=

(b) V= [Tor (e (S‘?e“)dx:fzzw (3—x) (8—x")dx = 2 [ (24— 8x — 3x> + x*)dx

mdlus height

= 2 [24x — 4% = 3x* 41X ) = 2m(48 — 16 — 12+ 2) = 204x

2
© V= f 2m r:l:iil;ls (hﬁ;ﬂt)dx = j; 27 (x +2) (8 —x)dx = 27TJ; (16 + 8x — 2x> — x*)dx
=2m [16x + 4x* — Ix* — ix° ]2:27(32—1—16—8—%) = 336n
d V= f 27 (pudius) (hsekzl}it)dy* f 2my - Yl/adY*ZWf y/3dy = & [y 7/’] 6n(128) = 68n
; 8
(@ V= f 27 (s hﬁiﬁt)dy = j; 2m (8 —y)y'dy = 27Tf0 (8y'/3 —y*3)dy = 27 [6y*/* — 3y7/3] |

=2 (96 384) 57671'

8
(f) V:fczﬂ r;l:ieulxls (hﬁi&)d}’:foZW(er )y ‘/3dx—27rf 4/3+y‘/3)dy—27r[3 7/3+3 4/3]
_ 384 __ 9367
=2 (5 4 12) = 5

25. (a

~

radlus height
=278 —8+44)—2n(—4+1+1) =

2 2
(b) V= f 2 Sheu ( She”)dx: f7127r(x+ 1)(x+27x2)dx:27rf7|(2+3x7x3)dx:27r [2x + 2x% — %x“]z

radlus height —1

=2r(4+6—-4)—2n(-2+3-1) =2

1 4
v=[Tar () (2 Yay = [ 2wy (T - (— )y + [ 2my (3~ (v - 2)dy
4
:47‘1; Y3/2dY+27Tfl (y¥2 — y2 4 2y)dy = & [y 5/2] +2om [2y32 — Ly +y2]‘1‘

=8N +or(@ -2 +16)—2r((-1+1) =1

V= f (hell ) <S}?"‘”>dx—f 2m (2 —x) (x +2 — x?)dx = 27rf —3x% + x})dx = 27 [4x X3+%X4]2,1

(c

~
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@ V= [ () (e )y = [ 24— y) (5~ (—y/B)ay + [ 2w (4 y) (5~ (v ~2)dy

4
:47rf 4\/_—y3/2)dy—|—27rf (y* —y/* —6y+4,/y +8)dy
_47.r[8y3/2 2 5/2]1+27T[ y3 - g 32 3y2+§y3/2+8y]4
_4w(§f§)+2 (————48+64+32)727r(%7%73+ +8) = 108

26. (a) V= fab27r( shell )( shell )dx = fl 2m (1 —x) (4 — 3x> — x")dx = 27rf71] (x> — x* +3x3 — 3x% — 4x + 4)dx

radius / \ height
= [Ix - b 3t - -2 ] =L b i 244 —2n(b b i p 124y =3
& V= [or rZ‘é?fL (et )ay = [ 2my(of5 = (ymay+ [y [ = (—/552) |ay
—47Tf y5/4dy—|—47f \/—dy [u= —y:>y—4—u:>du——dy y=1=u=3y=4=u=0)
D71 S i 0 L e i 0,

=M (83 V/3) =ty e =
she. she ! ! 4 5 1
27, @ V= [on () (S ) ay = [ omy-12(2 —y?) dy =247 [ (v~ y) dy = 24 [3 — ¥]

—un(i-h =% - %

d 1
(b) V= f 2m ;3?&) (;;;3; dy = [ 2n(1 —y)[12(y* — y*)] dy

0

I
)
~
3
S —
—_
N
|
«
N
—
(&)
[\
|
«
w
N—
o
<

1
© V= f 2 rzl:iillls (hse}igﬁt) dy = fo 27"( —y) [12(y? — y®)] dy = 24~ fo (% — y) (y2 — y3) dy

8
5
1
= 247 g —133—|—y4)dy—247r[§y3—Ey4+y?}0:247r(§—§+%) L1 (32 -39 + 12)

15 20 15 2
24#72
1
@ V= [ar (30 ) (e ) dy = [ 27 (v + 2) [12(% = ¥*)] dy = 24m [ (y+2) (5~ y) dy
11
:247rj; (Y -y + 2y - )dy—247rf (Ey?+1y? —y)dy:247r{%y3+23—0y4—y?]0
:247T(%+ﬁ*%)—2““<8+9—12>_2ﬂ_2w

2 2 5 5
28 @ V= [2n () () dy = [y [5 - (5 - %) ] ay= [Tomy (2 - ) ay =2 [ (v ) 0y
4 ;1 2
= f] = (FB) = on (- = (D) =2 (F) = ¥
d she she 2
W V= [or (B (B Yay = [Tone - [5 - (5 -%) ay= [ 2@ - (- ¥) @
2 ¥ 3 Y w _ ¥y _y ]’
ZZWfo (2y —7 Y +T>dY227T[T—m—Z+z—}
d 2 N
© V= [or () () ay= [ o [5 - (5 -%)]dy= [ 2r6 -0 (- ) ay
2
=onf, (¥ =3y =y 4+ ) ey =2n ¥ - F -+
d 2
@ V= [2r () (e ) ay = [ 2 (v+3)

2 5
:Zﬂj; (y3*%+%y2*32

[
«
~
N———
o
<«
Il
)
3
—
A<
\
1\3“<
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29.

30.

31.

(a)

(b)

(a)

(b)

(©)

(d)

(a)

(b)

(©)

(d)

d
About x-axis: V = f o Shell

—f 27ry

— 27.‘_[ a/2

About y-axis: V = f 2 ghe“

—f27rxx—x) f

x3

= 27T|:§ -

X
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shell
radlus ( height ) Y
y)dy =27 f (y*/? 1
2 1) _
33’] =2(3-3) =1
shell 0.5 y=x X
radlu% ) height y=X
( 2 ) + > X
0.5 1

ak 11 m
4}0:277(5_1):6

About x-axis: R(x) = x andr(x) = x> = V = j;bw[R(x)Q . r(x)Q]dx = f:w[xz — x4)dx

:W[ﬁ_ﬁ}l_ﬁ(l_l):@
3 5 3 5 15

0

About y-axis: R(y) = /yandr(y) =y = V = fcdw [R(y)2 - r(y)2]dy = j:w[y —y?]dy

2 3 1
:w[%—%] =33 =3

= Wj; (—Qx2

= 7(—16 + 16 + 16) = 167

Vf27r

= [Tamx(2-2)d x:27rf4(2x—§)dx

4
shell shell . x B
radlus (height)dX = ﬁ 27TX(2 +2 X) dx

= 27r[x2 - ﬂ —27(16 — &) = 2=

v L2 ) ()= [l 2o flanta -0 (2o an ] (s )
— 2r[8x — 2x2 + ﬂ =9 (32 - 32+ &) = b=

V:fabﬂ[R(x)Q_rx dx:Trf0 { —x (a %)2}dx=7rj:{(64_16x+7<2)— (36—6X+%)}dx

7 fi (3~ 10x 4+ 28)dx = 7w [ — 5x” + 28] 2 = 7[16 — (5)(16) + (7)(16)] = m(3)(16) = 48x

v = ["2n(

—2+3)=2(14-12+3)=

2
hell hell
r;d?us) (hsei;ht) dy = j‘l 27Ty(y - 1) dy y
2

3 2
—y)dy:ZW[%—%L 21

2) = (-3)] 17

2 2
(el (hﬁZﬂl) dx= [ 2mx2 - dx =27 [ (2x - x?) dx = 27 [x2 - ;}
-

-Y-(-3)- [(12 - (] 2w (-2) = %

,:,zfm (;gzzmdx 2 (1 =) @ = dx = 2n (3 = Y4 ?) dx
%X3] [(ﬂ_2+§)_(23_0_§+ D=2r(3)=2n

rz*;fﬁs (;;;ﬂt) dy = [T2nty = Dy - Day=2n [ - 19 = 2w [252] = %
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32. (a)

(b)

(d)

33. (a)

(b)

34. (a)

(b)

©

(d)
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V:j;dZﬂ'(

2 2
=or . y3dy=27r[y74}0:277(2£):87r

v = [T2n(

= f042ﬂ'x (2— \/§) dx = 271'f04(2x—x3/2) dx

=2r [x? -
=2r (16 —
v = [T2n(
=2m [8x —

d

V= 271'(

V:fcd27r(

= j;127r (y?

— 4r
e

V:f;dZﬂ'(

= fol 2r(1=y)(y —y*) dy

=2r fol(y

V:£d27r(

= fol 2y [1 = (y — y*)ldy

=2r fol(y

=2r(1-14+1)=Z15-10+6)

— Uz
15

2
shell shell _ 2
radius) (height) dy - j; 27Ty(y - O) dy

shell shell
radius ) ( height) dx

2 .5/214 _ 2.2

202 = 2m (16— 22)

64\ _ 27 _ 327

&) =2 (80 —64) =3

shell shell I 7 B B ‘o e 32

radius) height dx = 0 2m(4 —x) (2 \/§) dx =27 0 (8 4x 2x +x ) dx

§x3/2 - x2 4 2x02] 0 =2 (32— & — 16+ &) = 2T (240 — 320 + 192) = 21 (112) = 24
2 2 172

rzl:iillls) (hse};?}:t) dy = j:) 2m(2 —y) (y*) dy =2 j; (2y* —y3)dy =27 [% y3 — YT} .

16 327 8w
P =5@d-3=5

hell hell !
erEi:us) (hsei;ht) dy = j:) Zﬂ-y(y - yg) dy

3 5 1
—y4)dy=2f[%—%]o=2ﬂ(%—%)

shell shell
radius) (height) dy

. ;
—yty3+y4)dy:2ﬂ[%*%*%+%
shell shell

r;d?us) (hbeizht)dy

3 1

2 5
—y2+yh) dy :27r[y§fyf+yg}0

Use the washer method:

d ! 1 3 7
V= [rRy) - 2y)dy = [, n[12—<y—y3ﬂ dy=r | (1—y2—y6+2y4)dy:w[y—§—%+%
:77(1—%—

Use the washer method:

v=[r Ry -Pelay= [« 1= =y -

L4 2) = 5 (10535 15+42) = 2z

dy = 0] {1—2(y—y3)+(y—y3)2] dy

1 7 1
:wfo (1—i—y?—i—yﬁ_2y+2y3_2y4)dy—7f[3’+y?+y7—y2+y7—%L:w(1+%+%_l+%_%)
= 5(70 + 30 + 105 — 2 - 42) = 2

v = ["2n(

1 1 3 4 5
o[ (I-y+y —y+y —yhdy=2n, (1—2y+y2+y3—y4)dy:27r{y—y2+%+%—%}

210
1 1
) (b ) dy = [, 27 =91 = (y =y} dy =27 [[(1 =) (1= y+y?) dy
1

0

=2r(l-1+3+1-3)=Z@20+15-12)=2%F
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35.

36.

37.

38.

39.

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)
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V= [l () (e )ay = [} 2my (VB
_27Tf (2\/_}’3/2—)/ ) dy =27 {%§y5/2_yz4]2
=2 <4ﬁ.gﬁ) - 241> =2 (45*23 - %>

=2r-4(3-1)=¥@®-5=24 ! N
4 . 4 4
V= f2 r;l:iils (hﬁeggt) dx:j;Zﬂ'x(\/_—%) dx:27rj; (xg/Q—%) dx =27 {%x5/2—%}0
shell shell
V= f 2m radms (height) dx y
= [l2mx[(2x - x%) = x] dx 11 y=2x-x2_,
=2 x—x )ydx =2 x—x3 dx
7Tf 1 7Tf ) =X
) {X__X_“] —or(l_1y_=x
T3 T, 7T(3 4) 6 ' X
1
1 1
V= [Tor (e ) (e ) dx = [ 271 =30 [(2x = x2) = x] dx =27 [[(1 = %) (x = x*) dx
., 1
:27‘("/;(X—2X2—|—X3)dX:27T{%—%X3+%}0:2ﬂ'(%—%+%):%(6—84'3):—
V= [TrR0 - Pl dx =7 [ (12— 1) dx y
:7r[2x1/2—x]1/16:7r[(2—1)—( "3~ 16)]
_ 7\ —_ 97 L5 R
W(l—ﬁ)fﬁ y=g-V4
b hell hell 1
V:f27r er?us) (hseith) dy*fZTFy (% 76) dy ! y=1
)12
:27rf S y—27r[—§y y_2:|1 =
sl i b - (- R =2e (4 ) |
2w 97
T+ =1
2
v=[rRe -eeldy= [ (E - k) dy y
_ 2 1 1 1 1 J
=7 [-5y7° _l]lzﬂ[(_ﬂ_g)_(_ﬁ_ﬁ)] 2
= 2(2-6+16+3) =142
shell shell ! 1 1
V= fz radlus (heighl) dx = 1/4271-X <—x_1) dx
1 5 2 1 X
:27rf14(xl/2—x) dx =27 [3 32 _ 5

/ 1/4 .25 1
S (CR BRSNS BT P T T

Disk: V= V1 — V2
b; by
Vi = [Tr[Ri01 dx and Vo = [ wlRe()1? with Ry(x) = /242

a; =—2,b; =1;a,=0,by =1 = two integrals are required

= /X
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(b) Washer: V=V;+V,
Vi= fablw (IR1(x)]? — [r1(x)]?) dx with Ry(x) = ,/X;Z andr(x) = 0;a; = —2 and b; = 0;
Vo= 7% (RO — [20012) dx with Rax) = /25

= two integrals are required
d d
© Shell: V= [“om () (e ) dy = [Ty (20, ) dy where shell height = y* — (3y* — 2) =2 ~ 2%

¢ =0and d = 1. Only one integral is required. It is, therefore preferable to use the shell method.

ﬁ;aQ:Oandbgzl

However, whichever method you use, you will get V = 7.

40. (a) Disk: V=V; — V5, —V3
4
V., = fc 7T[Ri(y)]2 dy,i=1,2,3withRi(y) =1landc; = —1,d; = 1; Ra(y) = \/§and c; =0anddy = 1;
Rs(y) = (—y)l/4 and c3 = —1,d; = 0 = three integrals are required
(b) Washer: V=V +V,y
4
Vi= f (R = [6(I*) dy, i = 1,2 withRi(y) = Lri(y) = /y,c1 = Oand dy = [;
Ro(y) = 1, 15(y) = (=y)/*,c; = —l anddy = 0 = two integrals are required
b shell \ ( shell ° shell - 2 4 2 | 4
(¢) Shell: V= fl 27 (radius) (height)dx = fd 27rx(height>dx, where shell height = x* — (—x*) = x* 4+ x*,
a=0andb =1 = only one integral is required. It is, therefore preferable to use the shell method.
However, whichever method you use, you will get V = %‘"T.

M@ V= [ 7R -] dx= [ [(\/25 - x2)2 - (3)2] ax=r[ 25— —9dc=n[ (16— x)dx

Pt = (e - ) — (64 4 &) = 2

SOOﬂ

—w[16x— X7,

(b) Volume of sphere = %w 5) 256m __ 244

_ 500m _
= Volume of portion removed = >37 — =% = =5
TR
42. V= [T (et ) () ax= [ 2mxsine — 1) dx fu=x 1= du=2xdix = 1 5 u=0,
X = 1—|—7r:>u:7r]—>7rj;sinudu:—w[cosu}g:—ﬂ(—l—l):%r

43. V = f 27 r:}(‘ifgs (hfz%l) dx = j;r27rx (—%x —|—h)dx = 27rf0r (—%x2 + hx)dx = 277[—%x3 + %xz];

_ h 2h | _ 1 2
=2r(-+ ) = Ireh

44. V = f2 ritéfgs (hsgzgl)dy—j;Zwy[\/rZyz(\/rzyz)]dy—47rf0 yﬂdy

0 2
[u:r2—y2:>du:—2ydy;y=O:>u:r2,y:r$u:O]—>—2771;2\/ﬁdu:27rf; u'/2 du

=W = e

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



6.3 ARC LENGTHS

1.

b1+ k= D

= L:j:x/l—|—(x2—|—2)x2dx:j;jvl—l—Zx?—l—x“dx
:j;gy/(lth?)de:f:(1+x2)dx: [er";]z

=3+%F=12

2. g—i:%\/;: L:j:‘\/l—l—%xdx; [u:l—k%x

= du:%dx = gdu:dx;x:O = u=1;x

= u=10] — L= [ o2 (3du) = [2u¥?]

Il
- o
PN
Yoy
«<
_|_
[\
_l’_
<=
N——
CL
[\3|H

A
,_.
~
v
+
<
L
~
o
~
Q..

1
2
(5

dx
5. &=

2
:L:f\/1+y6—%+ﬁdy

— dy = f\/y—l-

=4

10
1

(Vo+7 >

_ 128-1-844 _

32
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123

32

K

y

5 X
y .
y
2.1 %’*
14
:'; X

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



UPLOADED BY AHMAD JUNDI
348  Chapter 6 Applications of Definite Integrals

2 2 _ Yy
6 §=% = (3§) =i =24y AL

= L= f\/1+ —2+y ) dy 2 =

1 3
1 1 2 1 8 1 1 (26 8 1 1 1 13
Q[YT } =3:[(F-3)-G-)]=:(3-5+3)=306+3)=7F
2 _o/ Y
7. P=x1B-_1x18 o (?TZ) :x2/3—%+xlzs 20
3 - 3X4/3 3X2’3
N 1 x-2/3 = =
= L= [ 148 L7 dx 1] y=E s
8
_ 1 x 2/3
_fl X 45 + Mg dx 0
x1/3+lX*1/32dx: 8 (x1/3 + 1x71/3) ax °
— [2 4/3+ 3X2/3] [2X4/3+X2/3] 2 4 6 8 *
=3[(2-24+2%) - (2+1)] 13244-3)=
dy _ (2 4
8. T =xX"4+u%+1- Gl =X +2x+1-} 55 y y=£+x2+x+
3 4x+4
_ 2 1 d _ 4 1
= +x?—; e = (d%) = +x _5+ T6(1-+x)"
R VAT T RS I = a1
? 41 (9" l
= [t G g X

:f()z\/[(1+x)2+%]2dx ' :

2 )2
:j;[(1+x)2+%} dx;u=14x = du=dx;x=0 = u=1,x=2 = u=23]
3

— L= [l s [y ] = 0 ) - (- ) = e e

2 y
9. &= /secly—1 = (&) =secty—1
N (dz> . x /41X Jsec“t 1dt
= L= f/4\/1+ (secly — 1 dy—fiﬂ sec?y dy //
=[any] ), =1-(-D=2 ’_;_1/
= /41
10. & =3¢ -1 = (31)2:3»;4*1 i
X
= L= [ VTTE0 —Dax= [ /3xd y=f Bt 1t
=3[ =R = By =1
L 4 lx
-2 -1
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11.

12.

15.

(a)

()

()

©

©

() L

()

(©)
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dx

= L= f,/1+ dx .

= [ VT4 ax

L~6.13

o o o (8) = ® ,

B ek Saa AN X SESS RRRS I RENS S

dx dx

= L= fi/} v/ 1 4 sect x dx

L ~ 2.06

2
dy — SCCQX = (d_y) = S€C4X (b)

2
dx _ ax )7 L a2 (b)
d—;—cosy:>(§) = cos’y y

éL:fOW\/lecos?ydy .

L ~ 3.82 ,

0.5 T =siny

o704 0% o8 1 X

& .y dx " _ ¥ (b)
& = —m:‘<)—1 7 d

- L= f}/z,/1+ 5 dy = 1/2,/ , dy
_ [ 2)1/2
=/, dy

~ 1.05

NOT TO SCALE

2
y+2=2% = (&) =@ +17 ®) y

3
= L=[ VItG+Didy
L ~9.29
y?4+2y=2z+1

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.

349



UPLOADED BY AHMAD JUNDI
350  Chapter 6 Applications of Definite Integrals

2
16. (a) %:cosx cos X + X sinx = (%) = x2sin’x (b) y
. 3
_ 2 qin2
= L—j; 1 + x* sin? x dx 25} y=sinz—zcosz
(© L~ 470 :
15
1
05
o X
2
17. (a) ji =tanx = (g—i) = tan® x (b) y

/6 P 2 g
_ / +
= L= f V14 tan2x dx = f sin é‘osf"‘ 2 dx o2
X
0.1 P
_ _ y _/ tan tdt
—j; ek f sec x dx o

(¢c) L~0.55 - = —In cos(x)

2
18. (a) g—;:\/sech—l = (g—;) =secly — 1 () v
A
/4 = ["\sec? t—1dt
= L:fiﬂ/ﬂ/l—l—(sec?y—l)dy A J Vsee

/4 /4
= fim [sec y| dy = fimsec y dy

(¢) L~220 -1 / 1
-1 1

19. (a) (%) corresponds to 4 here, so take dy as 3 \/— Theny = \/_ + C and since (1, 1) lies on the curve, C = 0.

Soy = /x from (1,1) to (4,2).
(b) Only one. We know the derivative of the function and the value of the function at one value of x.

2
20. (a) (%) corresponds to 4 here, so take dy as % Thenx = — < —|— C and, since (0, 1) lies on the curve, C = 1

Soy =t

(b) Only one. We know the derivative of the function and the value of the function at one value of x.

2. y= f v/ cos2tdt = dy = cos2x = L= j;)W/A\/ 1+ [\/ COSZX}Q dx = j;)ﬂ/4\/1 + cos2xdx = j:/“\/ 2cos2x dx
= j;)ﬁ/4\/§cosxdx = \/_ 2[sinx] o fsm(“) — \/Esin(O) =1

FUE

1 1
/ 1—x2/3 / 1 _ 1 _ 1 _ 134, _ 3 742/3]1
f\/—/4 I+ =5 dX—f\/E/A 1+m_1dx_f\/§/4 mdx_f\/i/z;mdx_f\/imx /dx_i[x/]\/i/zt

2/3
=31 - ;(@) =3 -3(1) =2 = total length = 8(3) = 6

, 2 2
2. y= (11— L cxc1s Y= 3(1-x3) P21y = LT ffﬂ\/ljt[ U=—x® ] dx

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
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y=3-2%0<x<2=¥=_2= L:L2\/1+(—2)2dx:ﬁ)2\/§dx: [ﬁxr
d= /202 +B- (-1’ =25

23.

2./5.

24. Consider the circle x“ 4+ y~ = r”, we will find the length of the portion in the first quadrant, and multiply our result by 4

=/r —x20<x<r:>dy—\/r2—xz:>L 4f 1—1—[ ] dxf4f1/l+ dX—4f P X_dX

T T
T _ dx
4 0—Tix2dx74rﬁ) e

25. 0 =y(y—-3)7 =& [9#} =4 [y(y

Syl =37 = 18x8 =2y(y = 3) + (y -3 =3y -3y - 1) = & = L=
2
= dx = 7@ =D qy: ds? = dx? + dy? = {7y 3giy71)dy] +dy? = =3y -1 336}(2 Cdy? + dy? = =3y -1 7;()y(_y3)721) dy? + dy?
Ty B 2
_ {(y4y1) n l}dyz _y 2y4§1+4ydy2 _ (ny) dy?

2. 42—y =64 = L [4x —y} 5{64};»sx_zydy:o;»dy_‘*—*:»dy:‘*?xdx;d@:dx%dy

= dx 4 [%dx} = a4+ 24 = (14

27, \/§x=f:,/1+(fi—{)2dt,x 0=12=

(—X) = ¥ = £1=y=1f(x) = £x+C where C is any real
number.

16x )dZ y+16xd2
y”

2_ 2 2_
4x 642-&-16x dxz — 20x = 64dX2 —_ %(SX _ 16)(1
y y

28. (a) From the accompanying figure and definition of the

differential (change along the tangent line) we see that

=f(x)
dy = f'(x,;) A x, = length of kth tangent fin is
VA XD+ [y = /(A x)? + [/ () A x?
- Tangent fin
(xk- l’f(xk-l)) with slope
— Axk f'(xk_])
>x
Xg-1 X

(b) Length of curve = ILmOO é (length of kth tangent fin) = lim 3 \/ (A X2 + [ (X)) A xi ]2

= lim S VT 0P Ax = [ /TT PP dx

29. > +y’=1=y=V1-x3P={0,11, 3,

EV(E N I \/(25)2 (£-£) +/u-+(0- ) =

+

30. Let (x1,y1) and (X2,y2), with X, > Xy, lieony = mx + b, wherem—iz y‘ , then Gly—m:L f v/ 1+ m2dx
=V1+m? [x)2 =V1+mi(xp —x)) = /1 + (222 (XZ_XI): Co=x1)"+ (2 =)’

(x2 —x1)*
(2 =x1)*+ (y2=y1)°

WO (s x) = o — )+ (2 - )
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3Ly =2x32 5 & = 3xV2 L) = [C\/14 302 dt= [T /T 0tdt [u=1+9=du=9d,t=0=u=1,

t:x;»u:mxwéf. " fadu= B[0P = 214907 - L) = 210 - 4 = (007
32.y=§—|—x2+x—|—4xl+4:>g—§:x2—|—2x+l—ﬁ (x+1)? —
—fox\/1+ (t+1)2t+11} dt = f [ = ] dt = f 1t;r1+1
e e W‘“mzifﬁ Sas ) —“T:(:i;ﬂzdt
_fo 4t(+tl+ 1= { t+l)]dt u=t+l=du=d;,t=0=u=1t=x=>u=x+1]

x+1 i xfl :
= ]du:[w—iu']l = (H+ 0 = i) = =0 = 30+ ) - ity —

33-38. Example CAS commands:
Maple:
with( plots );
with( Student[Calculus1] );
with( student );
f:=x->sqrt(1-x"2);a :=-1;

b:=1;
N:=[2,4,81];
fornin N do

= [seq( a+i*(b-a)/n, i=0..n)];
pts := [seq([x,f(x)],x=xx)];

L := simplify(add( distance(pts[i+1],pts[i]), i=1..n)); # (b)

T := sprintf("#33(a) (Section 6.3)\nn=%3d L=%8.5f\n", n, L );

P[n] := plot( [f(x),pts], x=a..b, title=T ): # (a)
end do:

display( [seq(P[n],n=N)], insequence=true, scaling=constrained );
L := ArcLength( f(x), x=a..b, output=integral ):
L=evalf(L); #(c)

33-38. Example CAS commands:
Mathematica: (assigned function and values for a, b, and n may vary)

Clear[x, f]
{a,b} ={—1, 1}; f[x_] = Sqrt[1 — x2]
pl = Plot[f[x], {X, a, b}]
n==_§;
pts = Table[{xn, f[xn]}, {xn, a, b, (b —a)/n}])//N
Show[{p1,Graphics[{Line[pts]}]}]
Sum[ Sqrt[ (pts[[i 4 1, 111 — pts[[i, 111)* + (pts[[i + 1, 211 — pts[[i, 2]1)*], {i, 1, n}]
Nintegrate[ Sqrt[ 1 + f[x]*],{x, a, b}]
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6.4 AREAS OF SURFACES OF REVOLUTION

2
1. (a) %:SCCQX = (g—i) =sec’x

/4
= S:27Tf0 (tan x) v/ 1 + sec? x dx

(c) S~3.84

dy dy 2 2
2 (@) =2 = (T) — 4x

2
:>s:27rf0x2 1+ 4x2 dx
) S~ 5323

2
_ 1 & 1 dx — 1
@ xy=1=x=l=&=_14 (dy) =3
2
= s=2r[ 1 /T+yTdy

() S=~5.02

2
4. (a) j—;:cosy = (g—;) = cos’y

= S:27rfoﬁ(siny)\/1+0052y dy

() S~ 1442

5. (@) xX24+y2=3 = y=(3-x2)’
S B o2(3-x) (- hx)

- (&) -0y

= S= 27Tfl4(3 - x1/2)2 \/1 + (1 —3x"1/2)% dx
© S~ 6337

Copyright © 2010 Pearson Education, Inc.
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(b)

(b)

(b)

(b)

(b)

0.8

0.6

0.4

0.2

y=tanx

0.2 0.4 0.6 0.8

0.5 1 1.5 2

x=siny

02 04 06 08 1
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2
6. @ & =1+y 2= (&) =(1+y?)’ ()

= S:27rf12(y+2\/§)\/1+(1+y*1/2)2dx T

(c) S~ 51.33

3 34 38 42 4648

2
7. (a) g—; =tany = (g—;) =tan’y (®) ’
/3

:>S:27Tj; (j;ytantdt) \/1+tan?y dy '
/3 y 0.8

= 27rj; (j; tantdt) secy dy 0.6 )

(C) S ~ 2.08 04 ,\=‘A tan t dt

0.2

1 1 1 .
0 01 02 03 04 05 06 0.7 *

8. (@ L=x-1= (3—1)2:)8—1 (b)
N s:zwflﬁ(ff\/@—mt) I+ (& 1) dx al e[
:27rflﬁ(flxvt2—ldt)xdx 0.:4—

0.6

(C) S ~ 8.55 04k
0.2
0

1 I L 1 1 1
1 12 14 16 18 2 22

b 2 4 4
9. y=3 = & =bs=[my 1+ (%) a = 5= [[2r(3) /1 +Fdx = [ xdx

,14
= TT‘E {%} = 47+/5; Geometry formula: base circumference = 27(2), slant height = /42 + 22 = 2,/5
0

= Lateral surface area = % (4m) (2 \/g) = 474/5 in agreement with the integral value

d 2 2 2
10, y=35 = x=2y = g—’y‘ :2;S:‘];27rxw/1—|— (g—;) dy:L27r-2y\/1+22dy=47r\/§j;ydy:27r\/§[y2]§
= 27\/5 -4 = 87T\/§; Geometry formula: base circumference = 27(4), slant height = /42 4 22 = 2\/5
= Lateral surface area = % (8m) (2\/5) = 877\/5 in agreement with the integral value

b 2 3 3 3
g =bs= [2my 14+ (%) ax= [20 52 14 (1) e =28 [+ Dax = 25 5 44]

:%5[(3—1—3)—(%—1—1)] :#(4—1—2):377\/§;Geometryformula: n=1i+l=1Ln=3+1i=2

slant height = \/(2 -1D?P+3B-1)2= \/g = Frustum surface area = 7(r; + r2) X slant height = 7(1 + 2)\/5

= 37r\/§ in agreement with the integral value

d 2 2 2
12.y=3+4 = x=2%-1= &=25= [ 1+(g_;) dy= [ 2r@y - Dy/T+4dy=2m/5 [ @y - D dy

=2m/5[y? —y]} = 2m/5[(4 —2) — (1 — 1)] = 47\/5; Geometry formula: r; = 1,1, = 3,

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



13.

14.

15.

16.

slant height =

the integral value

2
dy _ x* dy " _
dx — 3 = (dx) -

[u:lJr"g'1 = du=%x3dx =

[SIFEN=1Io N
w2
Il
< v
(3]
o
%
Lo
+
oL
o
el

25/9 L
—>S:27Tf1 ul/Q-Zdu:7T

x=0=>u=1,x=2 = u:%]
2
3
=3 (F-0) =55 =%

2
dy _ 1172 o (dv)" 1
dx 2 ( )

= s—fwzw\/,/ur4 dx

15/4 /2 15/4
=27 " dx =27 B (x—l— ) }3/4
T 3/2 3/2 T 3
=5+ -G =5 (0"
—FE-n=2

&1 Co2 _ iox (d_y)2:
dx 2 \/2X—X2 \/2x—x2 dx
1.5 2
= S= [ 2mV/2x —x2 /14 120 dx
1.5
_ .2 V2x—x241—2x+x?
2”./;.5 V2X — X S e R

- 27rf1'5dx — 2r[x]hE = 2
0.5 0.5

dy _ 1
d

— dy
X 2«/x+ = ( > 4(x+1)

= s= [amy/x+1 1+ 5t dx
5 5
:27rf;\/(x+l)+%dx:27rfl x—l—%dx

— o [z (x+ %)3/2] j i [(5+ 5)3/2 (4 %)3/2]

5[~ % (5-3)
3 3 23 23

=2(125-27) = 98—ﬂ:497”

2 1
dx dx 2my? .
[u—l—f—y4 = du=4y’dy = ldu—y3dy'y:0
u=1lLy=1=u=2 — S—f27r

=ifwra= g e i=(VE-)

Copyright © 2010 Pearson Education, Inc.
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\/(2 —1D24+@3-1)2= \/g = Frustum surface area = 7(1 + 3)\/7 = 47r\/§ in agreement with

y
x3
y= Y
X
2
y
1.944 y— ‘x
0.87-
0.75 3.75
y
11 T~
y=,/2x-—x2
' x
.5 1 1.5
y
24+ ,,y;/x-H/
144

x

wi= 4
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18. x = (% y3/2 — y1/2) < 0,when 1 <y < 3. To get positive

y
area, we take x = — (1 y3/2 — y1/2) 1 32 _y12
X=|— - S
dx 1 (y1/2 -1/2 ax )’ 1 -1 (3y ’ ) 3
= 52—5(37 -y ):> (@) :Z(y_2+y )
= S=— f27r y3/2 — y1/? \/1 ;(y—2+y")dy l1
— on [T(Ly2 -y [l F 2y ) dy - X
-0.67

AHMAD JUNDI

3 [ (v1/2 4 y—1/2)2 3 3
= —om [ (Ay¥2 g2y VT gy e [Ty12 (1y — 1) (y1/2+#) dy=—n [ (Ay-1)+Ddy

3 5 ) 3
S S DL R U ST (R SRR R R CRY

— I (-18—1+43) =1

2 15/4 15/4
9. %= » (8) =5 = 5= [ iy e w = [ VA T
15/4 5
=an [ VE Ty ay = an R - = - (5 ) s = g [(0) - 5]
= (5V5-3f) = g (L) - nfs

+14+1)

2 1 1 1
dx 1 dx 1 1
20 &= oo (@) =5 = S= [ oy =T\ i+ 5 dy=2nf JOy— D+ Tdy=2r] 2y dy

= om Va3, = R [0 = ()] = 2 (1 34F) = 2 (252) = 5 (162 -

1
2l s=onf \/ay—1 1+(¢—) dy = 27 l/,/ny J1+ 5 dy=2n 1/2,/2y7 2

3

20 [ /B0y =22 [ iy = 2B 1571 =23 (VR - (1) )]=2ﬁw<%—ﬁ)

2E (35) =¥ (- )

V2
22, y=1(2+2" = dy=xV/+2dx = ds= T+ (22 tx)dx = S=2r[" x/1+ 2+ x* dx

NG
_27Tf xy/ (x2 + x—27rf (x2+1) x—27rf x—l—x)dx—27r{ —|—X2—2]0 :271'(%—1—%

2
23, ds = /A +dy? =/ (y0 - k) +1dy_\/(y6§+1gy6)+1dy_,/(y6+;+lgyﬁ)dy

2 2 2 2
(v+ o) dy=(s+55)dys= [2nyas=2n [Ty (v*+ k) dy =2n [ (v' + Ly ?) dy
2

=or [£ -4y =or[(2-

RO B R R TUEIPERE -

o0

2 /2
24, y =cosx = g—i:—sinx = (%) =sin?x = S:27rf /Q(Cosx)\/1+sin2xdx
=T,

2
2. y = ﬁfﬂ:>%:%wﬁf>1”<M>‘fzaé(%)zﬁfm

= s=2nf Val—x2\[1+ @5m de=2n [ \/(a — ) +x2dx = 27 [ adx = 2malx),

= 2maa — (—a)] = (2ma)(2a) = 4ma?
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Section 6.4 Areas of Surfaces of Revolution

2 2., 2
b g (96 oo LT

h”+r2 f xdx = 25 \/h2 4 [%]h 2 /h2 + 12 (%) = 7ry/h? + 12

27. TheareaofthesurfaceofonewoklsS—f27rx~/1+( ) dy. Now, x> +y2 =162 = x = /162 —y2

28.

29.

30.

31.

32.

dx _ - dx 7 _ 2 _ [ 2 _ -
= ¢ = 162y_y2 = (@) = 5y ff71627r\/162—y2\/l+l62y—_y2dy—27rfil6\/(l62—y2)+y2dy

;
= 27rf716 16 dy = 327 - 9 = 2887 =2 904.78 cm?. The enamel needed to cover one surface of one wok is

V=S-0.5mm=S-0.05cm = (904.78)(0.05) cm® = 45.24 cm3. For 5000 woks, we need
5000 - V = 5000 - 45.24 cm® = (5)(45.24)L = 226.2L = 226.2 liters of each color are needed.

2 a+h
— /2 _x2 dy _ 1 _2x _ _ -—x &) X . g — f 2 — x2 x?
YEVE =X = g =y s T s (dy) =55;8=2n . r’ —x 1+ 755 dx

a+h
=27 f —x2)+x2dx = 2mr | dx = 2mrh, which is independent of a.

2 a+h
— 2 _ 42 dy 1 22x o —x )" _x* .q_ f VR2 —x2 ./ X2
y= R*—x* = dx 2 VR2—x2  R2-x2 = (dy) - szxz’s =2m a R X 1+ RZ —x2 d

a+h a+h
=2 [ /RE—x) + 2 dx=2rR | dx =2rRh

_ )2 2
(@) X2+y? =452 = x=./452 —y? = = ’_452),_},2 = (g—y) =5y
45 > 45 45
s= [ on Ay 14 2 S dy=2nm [ @ iy dy=2n-45)  dy

= (2m)(45)(67.5) = 60757 square feet
(b) 19,085 square feet

(a) An equation of the tangent line segment is
(see figure) y = f(m,) + f'(my)(x — m,).
When x = x,_, we have
r; = f(my) + f'(m)(x;_; — my)
= f(my) + f'(my) (= 5*) = f(my) — f'(my) 5 ;

/y = f(x)

>

when x = x, we have 1 ! r,
ry = f(my) + f'(m)(x, — my) o i
= f(my) + f'(my) 52 !
(b) LY = (Ax)? + (1 — 1y)? et T K
Je Ax, —

= (Ax)* + [f’(mk) % _ (_f/(mk) Aka)]Q
= (Ax)” + [f'(mIAX]* = Li = /(Ax)? + [f'(m)Ax,], as claimed

(c) From geometry it is a fact that the lateral surface area of the frustum obtained by revolving the tangent

line segment about the x-axis is given by AS, = 7(r; + )Ly = 7[2f(m,)] \/ (Axk)2 + [’ (my) Ax, ]2

using parts (a) and (b) above. Thus, AS, = 27f(m,) /1 + [f'(my)]? Ax,.
n n b
(d S= nlgmOO g AS, = nlgnOO k; 2mf(my) /1 + [f'(m)]?2 Ax, = f. 27f(x) v/ 1 + [f'(x)]? dx

dx x1/ dx x2/3 X273

= s=2 2m (1 =) 14 (F 1) ax=dr [ (1—x2)" /x5 ax

y=(1- X2/3)3/2 N X2/3)1/2 (- 2x13) = — (I—Xf'/:)l’2 = (d_y)2 _ 1B _ 1

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.

357



UPLOADED BY AHMAD JUNDI
358  Chapter 6 Applications of Definite Integrals

_47rf 2/3 x~ /3 dx; [u:leZ/3 = du= 7%)(1/3 dx = f—du*x’l/3 dx;

x=0 = u=1x=1=u=0 - S=4r [ v (=3 du) = —6r [2u/?]) = —67 (0— 2) = 2=
6.5 WORK AND FLUID FORCES

1. The force required to stretch the spring from its natural length of 2 m to a length of 5 m is F(x) = kx. The work done
3 3
byFisW= | Foodx=k [ xdx=%[x2]} = %. This workis equal to 1800J = Jk = 1800 = k = 400 N/m

2. (a) We find the force constant from Hooke's Law: F =kx = k= ; = k= = 200 Ib/in.

2
(b) The work done to stretch the spring 2 inches beyond its natural length is W = f kx dx = 200 f x dx =200 {"7]

=2002 —0)=400in-1b = 33.3ft-Ib
(c) We substitute F = 1600 into the equation F = 200x to find 1600 = 200x = x = 8 in.

0

3. We find the force constant from Hooke's law: F = kx. A force of 2 N stretches the spring to 0.02 m = 2 = k - (0.02)
= k = 100 Y. The force of 4 N will stretch the rubber band y m, where F=ky =y = =y = 16‘% =y=0.04m

0.04 0.04
= 4 cm. The work done to stretch the rubber band 0.04 mis W = . kx dx = 100 f x dx = 100 { } .
_ (100)(20.04)2 —0.08]
F 90

4. We find the force constant from Hooke's law: F =kx = k= = k= T = k=90 rlj] The work done to stretch the

5 5 ,15
spring 5 m beyond its natural length is W = fo kx dx =90 j; xdx =90 {%} 0= (90) (%) = 112517
21,714 _ 21,714

5. (a) We find the spring's constant from Hooke's law: F =kx = k= g =55 =5 = k=7238 %

0.5 0.5 0.5
(b) The work done to compress the assembly the first half inch is W = j; kx dx = 7238 j; x dx = 7238 [%2]
0

= (7238) @ = (7238;& ~ 905 in - Ib. The work done to compress the assembly the second half inch is:

1.0 1.0 5,1 1.0
W= [l cdx=7238 [ Cxdx = 7238 [F] = 28 [1 - 057] = P20 ~2714in - Ib

6. First, we find the force constant from Hooke's law: F =kx = k= = ﬁ =16-150 = 2,400 : “’ If someone
compresses the scale x = % in, he/she must weigh F = kx = 2,400 (%) 300 Ib. The work done to compress the scale
1/8 ,71/8
this faris W = [ kx dx = 2400 %] = 28 = 1875 Ib-in. = 2 fi-Ib

7. The force required to haul up the rope is equal to the rope's weight, which varies steadily and is proportional to X, the
50 50 51 50
length of the rope still hanging: F(x) = 0.624x. The work done is: W = fo F(x)dx = fO 0.624x dx = 0.624 ["7] .
=7801J

8. The weight of sand decreases steadily by 72 1b over the 18 ft, at 4 1b/ft. So the weight of sand when the bag is x ft off the
b 18
ground is F(x) = 144 — 4x. The work done is: W = f F(x) dx = fo (144 — 4x)dx = [144x — 2x?] (1)8 = 1944 ft - Ib

9. The force required to lift the cable is equal to the weight of the cable paid out: F(x) = (4.5)(180 — x) where x
180 180
is the position of the car off the first floor. The work done is: W = j; F(x)dx = 4.5 fo (180 — x) dx
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,7 180 , ,
=45 [180x — %] © =45 (180° - 1) = 4250~ 72,000 ft- 1o

Since the force is acting toward the origin, it acts opposite to the positive x-direction. Thus F(x) = — X% The work done

N A e e e e

Let r = the constant rate of leakage. Since the bucket is leaking at a constant rate and the bucket is rising at a constant rate,
the amount of water in the bucket is proportional to (20 — x), the distance the bucket is being raised. The leakage rate of
the water is 0.8 1b/ft raised and the weight of the water in the bucket is F = 0.8(20 — x). So:

2 2720
W= [08(20—x)dx =038 {20x - 7] = 160ft-Ib.

Let r = the constant rate of leakage. Since the bucket is leaking at a constant rate and the bucket is rising at a constant rate,
the amount of water in the bucket is proportional to (20 — x), the distance the bucket is being raised. The leakage rate of
the water is 2 1b/ft raised and the weight of the water in the bucket is F = 2(20 — x). So:

2 2120
w= [ 2(207x)dx:2[20x75]0 = 400 ft - Ib.

Note that since the force in Exercise 12 is 2.5 times the force in Exercise 11 at each elevation, the total work is also 2.5
times as great.

We will use the coordinate system given.

(a) The typical slab between the planes at y and y + Ay has
a volume of AV = (10)(12) Ay = 120 Ay ft?. The force
F required to lift the slab is equal to its weight:
F =624 AV = 62.4 - 120 Ay Ib. The distance through
which F must act is about y ft, so the work done lifting
the slab is about AW = force x distance
=62.4-120-y- Ay ft - Ib. The work it takes to lift all

20
the water is approximately W ~ > AW
0

20

=3 62.4-120y - Ay ft - Ib. This is a Riemann sum for
0
the function 62.4 - 120y over the interval 0 <y < 20. The work of pumping the tank empty is the limit of these sums:
20 20
W= j; 62.4 - 120y dy = (62.4)(120) [y;] . = (62.4)(120) (@) = (62.4)(120)(200) = 1,497,600 ft - 1b

(b) The time t it takes to empty the full tank with (f—l)—hp motor is t = 25(‘)Nﬂ = 1’49275’5%""3 = 5990.4 sec = 1.664 hr

sec

= t &~ 1 hr and 40 min
(c) Following all the steps of part (a), we find that the work it takes to lower the water level 10 ft is

10 10
W= fo 62.4 - 120y dy = (62.4)(120) H | = (62:4)(120) (190) — 374,400 ft - Ib and the time is t =

= 1497.6 sec = 0.416 hr ~ 25 min
(d) In alocation where water weighs 62.26 }TI?}:
a) W = (62.26)(24,000) = 1,494,240 ft - 1b.

b) t = L8240 — 5976.96 sec &~ 1.660 hr = t~ 1 hr and 40 min
Ib

In a location where water weighs 62.59 3
a) W = (62.59)(24,000) = 1,502,160 ft - Ib

b) t = L3210 — 6008.64 sec ~ 1.669 hr => t ~ 1 hr and 40.1 min

_W__
250 th

sec
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Ground level

(a) The typical slab between the planes at y and y + Ay has
a volume of AV = (20)(12) Ay = 240 Ay ft3. The force
F required to lift the slab is equal to its weight:
F =624 AV = 62.4 - 240 Ay 1b. The distance through
which F must act is about y ft, so the work done lifting
the slab is about AW = force x distance

20
= 62.4-240 -y - Ay ft - Ib. The work it takes to lift all the water is approximately W ~ > AW
10

20
=Y 62.4-240y - Ay ft - Ib. This is a Riemann sum for the function 62.4 - 240y over the interval
10

20
10 <y <20. The work it takes to empty the cistern is the limit of these sums: W = fl o 62.4 - 240y dy
5720
= (62.4)(240) [y—] = (62.4)(240)(200 — 50) = (62.4)(240)(150) = 2,246,400 ft - b

(b) t = 50 = 22080 i ~ 8168.73 sec ~ 2.27 hours ~ 2 hr and 16.1 min

(c) Following all the steps of part (a), we find that the work it takes to empty the tank halfway is
15 15
W= fl , 62.4 - 240y dy = (62.4)(240) H = (62.4)(240) (3 — 190) = (62.4)(240) (122) = 936,000 ft.

Then the time is t = 27;”,-[_“, = 2800 ~ 3403.64 sec ~ 56.7 min

(d) In alocation where water weighs 62.26 }tb}

a) W = (62.26)(240)(150) = 2,241,360 ft - Ib.

b) t = 22139 — 8150.40 sec = 2.264 hours ~ 2 hr and 15.8 min

©) W = (62.26)(240) (12) = 933,900 ft - Ib; t = 2220 = 3396 sec ~ 0.94 hours ~ 56.6 min

275
In a location where water weighs 62.59 1 ©

a) W = (62.59)(240)(150) = 2,253,240 ft - 1b.

b) t = 222240 — 8193.60 sec = 2.276 hours ~ 2 hr and 16.56 min

©) W = (62.59)(240) (12) = 938,850 ft - Ib; t = 2350 ~ 3414 sec ~ 0.95 hours ~ 56.9 min

The slab is a disk of area 7x> = TF(%)Q thickness Ay, and height below the top of the tank (10 — y). So the work to pump

the oil in this slab, AW, is 57(10 — y)m ( ) The work to pump all the oil to the top of the tank is

W= [ (10y? - y)dy = 3 [19° yﬂ = 118757t 1b ~ 37,306 ft - Io.

Each slab of oil is to be pumped to a height of 14 ft. So the work to pump a slab is (14 — y)(7) (%)2 and since the tank is

half full and the volume of the original cone is V = mr’h = $7(5%)(10) = 2= ft*, half the volume = %% ft’, and

with half the volume the cone is filled to a height y, 2“0” = —7r 1 y =y = /500 ft. So W = f 57” (14y? — y3) dy

14y 17 /500 _
_ st {Ty _ yz} 600421t b,

. The typical slab between the planes at y and and y + Ay has a volume of AV = 7(radius)?(thickness) = 7 ( ) Ay

= 7-100 Ay ft3. The force F required to lift the slab is equal to its weight: F = 51.2 AV = 51.2 - 1007 Ay Ib
= F = 51207 Ay Ib. The distance through which F must act is about (30 —y) ft. The work it takes to lift all the

30 30
kerosene is approximately W =~ >~ AW = > 51207(30 — y) Ay ft - Ib which is a Riemann sum. The work to pump the
0 0

30 30
tank dry is the limit of these sums: W = ‘/; 51207m(30 — y) dy = 51207 {30y - y;} . = 51207 (22) = (5120)(450m)
~~ 7,238,229.48 ft - 1b

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.



18.

19.

20.

21.

22.

UPLOADED BY AHMAD JUNDI
Section 6.5 Work and Fluid Forces 361

(a) Follow all the steps of Example 5 but make the substitution of 64.5 & for 57 &5. Then,

178 _ _ y -
W= o 10—yt ay = et [19 ] T etm (1 —%) = (%) (8) (9 -2)
= 938 — 91.57 - 8% ~ 34,582.65 ft - Ib
(b) Exactly as done in Example 5 but change the distance through which F acts to distance ~ (13 — y) ft. Then

_ 577r 577r 13y? 18 _ 57x (1388 8\ _ (57x _ 57x-837
W= (13 —y)y* dy = {3Y_YTL)*T(T_T)*( ) (8%) (5 —2) =557

= (197r) (82) (7)(2) = 53,4825 ft-1b

The typical slab between the planes at y and y+Ay has a volume of about AV = m(radius)?(thickness) = 7 (\/§)2 Ay ft3.

The force F(y) required to lift this slab is equal to its weight: F(y) = 73 - AV = 737 (\/§)2 Ay = 731y Ay Ib. The

distance through which F(y) must act to lift the slab to the top of the reservoir is about (4 — y) ft, so the work done is
approximately AW =~ 737y (4 —y)Ay ft-1b. The work done lifting all the slabs fromy = 0fttoy =4 ftis

approximately W =~ > 737 yi (4 — yx)Ay ft - Ib. Taking the limit of these Riemann sums as n — co, we get

4 4
W= [ 73ry @ —y)dy=T3n [ (4y —y2)dy =737 [2y> — 1y¥]; = T3m(32 — &) = 237 fi. b,

The typical slab between the planes at y and y+Ay has a volume of about AV = (length)(width)(thickness)

= (2 25 — y2) (10) Ay ft®. The force F(y) required to lift this slab is equal to its weight: F(y) = 53 - AV

=53 (2 25 — y2) (10) Ay = 1060\/ﬂAy Ib. The distance through which F(y) must act to lift the slab to the
level of 15 m above the top of the reservoir is about (20 — y) ft, so the work done is approximately

AW =~ 1060,/25 — y2(20 — y)Ay ft-Ib. The work done lifting all the slabs fromy = —5 fttoy = 5 ft is

approximately W ~ Y~ 10604/25 — y? (20 — yx)Ay ft - Ib. Taking the limit of these Riemann sums as n — oo, we get
k=0

5 5 5 5
W = [1060,/25 — y2(20 — y)dy = 1060 | (20 — y)y/25 — y?dy = 1060 [fszo V25 —yidy - [y /25— y2dy]
5
To evaluate the first integral, we use we can interpret f . \/25 — y2dy as the area of the semicircle whose radius is 5, thus

5 5
[ 20/25 —y2dy =20 [ \/25 — y2dy = 20[1n(5)*] = 250 To evaluate the second integral let u = 25 — y?
5 0
=du=—-2ydy;y=-5=u=0,y=5=u=0, thus fisy\/ZS—yzdy: —%fo ﬁdu:O.Thus,

1060 [ f 20/25 — y2dy — f y\/25 = dy} 1060(2507 — 0) = 2650007 ~ 832522 ft - Ib.

The typical slab between the planes at y and y+Ay has a volume of about AV = m(radius)?(thickness)
=7 (/25— y2)2 Ay m®. The force F(y) required to lift this slab is equal to its weight: F(y) = 9800 - AV
= 98007 (/25 — yQ)ZAy = 98007 (25 — y?) Ay N. The distance through which F(y) must act to lift the

slab to the level of 4 m above the top of the reservoir is about (4 — y) m, so the work done is approximately
AW = 98007 (25 — y?) (4 — y) Ay N - m. The work done lifting all the slabs fromy = —5mtoy = 0 mis

0
approximately W ~ >~ 98007 (25 — y?) (4 — y) Ay N - m. Taking the limit of these Riemann sums, we get
-5

0 0 0
W = [ 98007 (25 — y?) (4 — y) dy = 98007 | (100 — 25y — 4y? +y*) dy = 98007 [100y Byr_dyigy

= —98007 (—500 — 22 + 5 - 125 4 ©3) ~ 15,073,099.75

-5

The typical slab between the planes at y and y+Ay has a volume of about AV = m(radius)?(thickness)
=7 (/100 — y2)2 Ay = 7 (100 — y*) Ay ft®. The force is F(y) = 2%® - AV = 567 (100 — y?) Ay Ib. The
distance through which F(y) must act to lift the slab to the level of 2 ft above the top of the tank is about
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(12 — y) ft, so the work done is AW ~ 567 (100 — y?) (12 — y) Ay Ib - ft. The work done lifting all the slabs

10
fromy = 0 ft to y = 10 ft is approximately W ~ Y 567 (100 — y?) (12 — y) Ay Ib - ft. Taking the limit of these
0

10 10
Riemann sums, we get W = [ 567 (100 — y?) (12 —y) dy = 567 [ (100 — y?) (12— y) dy

10
_567rf 1200 — 100y — 12y +y)dy—56w{1200y—w—%+ﬂo

= 56 (12,000 — 199% _ 4. 1000 + 120%) = (56m) (12 — 5 — 4 + 3) (1000) ~ 967,611 ft - Ib.
It would cost (0.5)(967,61 1) = 483,805¢ = $4838.05. Yes, you can afford to hire the firm.

23. F= m == mv = by the chainrule = W = f mv dx = mf dx = [ V2(X)] :
=1 m[ 2(xQ) — V2(X1)] 1mv3 — L mv}, as claimed.
24. weight =2 o0z = % Ib; mass = % = % = 256 slugs; W = (%) (256 slugs) (160 ft/sec)® ~ 50 ft - Ib

_90mi . Ihr _ Imin _ 5280ft _ _ 031251b _ 03125
25. 90 mph = 5 - @ T G0sec ~ Tmi — 132 fUsec; m = S50 = =55 slugs;

W= (1) (%121) (132 fi/sec)® ~ 85.1 ft - Ib

26. weight = 1.60z =0.11b = m = 32410 — Lo slugs; W = (1) (555 slugs) (280 ft/sec)” = 122.5ft - b

27. vi = 0 mph = oL

v2 =153 mph = 2244 1.2 0z = 0.1251b = m = 20 = L slugs;

)(224.4)* — 1(55)(0)* = 98.35 ft-1b.

sec’

12 1.2
W= fF dx 5 MV; 2mV172(256

28. weight = 6.5 0z = % Ib = m= slugs; W = (%) ((16)(32) slugs) (132 ft/sec)® ~ 110.6 ft - Ib

(16)(32)

29. We imagine the milkshake divided into thin slabs by planes perpendicular to the y-axis at the points of a partition of the
interval [0, 7]. The typical slab between the planes at y and y + Ay has a volume of aboutAV = ﬂ(radius)Q(thickness)

= (L2 ) Ay in®. The force F(y) required to lift this slab is equal to its weight: F(y) = § AV = 4 (1412 ) Ay oz.
The distance through which F(y) must act to lift this slab to the level of 1 inch above the top is about (8 —y) in. The work

done lifting the slab is about AW = ( )%(8 — y)Ay in - oz. The work done lifting all the slabs from y = 0 to

y = 7 is approximately W = Z CRvEL An 17.5)%(8 — y) Ay in - oz which is a Riemann sum. The work is the limit of these
sums as the norm of the partition goes to zero: W = f sy + 17.5)*(8 — y)dy

7
= g (2450 — 2625y — 27y* — yh)dy = 542 [— Y _gy3_ 2625 2 —|—2450y] i

4r 7 2625
Zm{—z—9’73 - 7% 42450 - 7}~91321n oz

35,780,000 35,780,000

30. Work = 100GMS gr = 1000 MG 4 = 1000MG [ 1]

6,370,000 12 6,370,000

35,780,000
6,370,000

= (1000) (5.975 - 10*) (6672 - 101) (75 — 557000 ) = 5144 x 1010

31. To find the width of the plate at a typical depth y, we first find an equation for the line of the plate's
right-hand edge: y = x — 5. If we let x denote the width of the right-hand half of the triangle at depth y, then
x = 5 4y and the total width is L(y) = 2x = 2(5 +y). The depth of the strip is (—y). The force exerted by the

2 -2
water against one side of the plate is therefore F = fii w(—y)-L(y)dy = fis 624 -(—y)-2(5+y)dy
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_1248f( y)dy=1248 [~ 3y’ — 1y9] 2= 1248[(~3-4+1.8) - (- 3-25+1.125)]
= (124.8) (1% — l—y) = (124.8) (%) = 1684.81b

An equation for the line of the plate's right-hand edge isy = x —3 = x =y + 3. Thus the total width is
L(y) = 2x = 2(y + 3). The depth of the strip is (2 — y). The force exerted by the water is

0 0 0 9 2 370
F— f3w(2—y)L(y)dy: [ 624-2—y)-2G+y)dy=1248] (6 -y —y?) dy = 1248 [6y— L %} y
=(—124.8) (-18 — 2 +9) = (—124.8) (— &) = 1684.8 Ib
b .
(a) The width of the strip is L(y) = 4, the depth of the strip is (10 —y) = F = j; w - (;;g&)F(y)dy

3 3 273
= [.'62.4(10 — y)(4)dy = 249.6 [, (10 — y)dy = 249.6 {10y - %} | =249.6(30 — 3) = 6364.8 Ib
b ‘
(b) The width of the strip is L(y) = 3, the depth of the strip is (10 —y) = F = fa w - (;;;&)F(y)dy

4 4 274
= [ 62.4(10 — y)(3)dy = 187.2 [} (10 — y)dy = 187.2 [IOy - Yﬂ L= 187.2(40 — 8) = 59904 Ib

b .
The width of the strip is L(y) = 2,/25 — y2, the depth of the strip s (6 —y) = F = [ w- ( ;;E&)F(y)dy

5 5 5 5
= [.'62.4(6 — y)(2/25 — y?)dy = 1248 (6—y)«/25—y2dy:124.8[f; 6/25 —yidy - [ yx/25—y2dy]

363

5
To evaluate the first integral, we use we can interpret f v/25 — y2dy as the area of a quarter circle whose radius is 5, thus

f 61/25 — y2dy = 6f V25 — y2dy = 6[17(5)*] = Z. To evaluate the second integral let u = 25 — y?
:>du:—2ydy;y:0:>u:25,y:5:>u:0,thusf mdy———j;sfdu— f u'/?du
— 1[u¥2] 2 = 123 Thus, 124.8 [j;56 V5 —yidy— [Ty - y2dy] = 124.8(%% — 125) & 9502.7 Ib.

Using the coordinate system of Exercise 32, we find the equation for the line of the plate's right-hand edge to be
y=2x—4 = x= Y+4 and L(y) = 2x = y + 4. The depth of the strip is (1 —y).

0 2 3y _y
@ F= [ wl—yLdy= [ 624-(1—y)Ny+4)dy =624 [ (4—3y—y?)dy = 624 [4y -y .z
= (—62.4) {(74)(4) — 849 4 %} = (—62.4) (—16 — 24 + §) = E2DCINE — 1164 8 1b

(0) F = (~64.0) [(~4)(4) — L0 4 §] = CHOCLND » 110471

Using the coordinate system given, we find an equation for
the line of the plate's right-hand edge tobe y = —2x 44
= X = 4% and L(y) = 2x = 4 —y. The depth of the

1
stripis (1 —y) = F:ﬁw(l—y)(4—y)dy
! 1
=624 [, (2 — Sy +4) dy =624 [5 - ¥ ay]
= (624) (§ — 3 +4) = (624) (213+2) = G — 11441b
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37. Using the coordinate system given in the accompanying y (in)
figure, we see that the total width is L(y) = 63 and the depth
/

‘y/f

//z

of the stripis 33.5-y) = F= f33w(33 5 —y)L(y) dy

= [T 335y -63dy = (£)63) ). (335-y)dy
33

(&) 63 [335y - %] "= (%) [33563) - ¥

(64)(63)(33)(67 —33) __
UGN =3 — 1309 Ib

X(in)

-31.5 31.5

38. Using the coordinate system given in the accompanying
figure, we see that the right-hand edge is x = ﬂ
so the total width is L(y) = 2x = 24/1 — y2 and the depth
of the strip is (—y). The force exerted by the water is

0
therefore F = f,,w -(=y)-2y/1 —y2dy

—624f I—y2d(l—y )—624[%( —y)3/2} = (62.4)(2) (1 —0) = 41.61b

39. (a) F=(624%

&l

) (8 ft)(25 ft*) = 12480 Ib

b ,
(b) The width of the strip is L(y) = 5, the depth of the stripiis (8 —y) = F= [ w- ( ;;;&)F(y)dy
5 5 )
= [, 62.4(8 —y)(5)dy = 312 [ (8 — y)dy = 312[8y - y?] =312(40 — 2) = 858011b
(c) The width of the strip is L(y) = 53, the depth of the strip is (8 — y), the height of the strip is 1/2 dy

—F=[w (g ) )dy:fos/f6Z48— fdy—312\/_f (8 — y)dy = 312/2 [8y - ¥
_312J—(———)—97223

/2

0

40. The width of the strip is L(y) = % (2 3-— y), the depth of the strip is (6 — y), the height of the strip is %dy
2v/3
SF= W (e VE(y)dy = [ 62.4(67y)'%(2 3-y) Zdy = 6f0 (12\/776y 29V/3+y?)dy
936[12yf—3y —y \f+y] 9\;3(72—36 12\/§+8\/§)z1571.041b

41. The coordinate system is given in the text. The right-hand edge is x = \/§ and the total width is L(y) = 2x = 2\/§.
(a) The depth of the strip is (2 — y) so the force exerted by the liquid on the gate is F = j; lw(2 — y)L(y) dy
- f150(2 —y)-2,/3 dy = 100 fl(z — /5 dy = 100 [ (2y1/2 = y¥/2) dy = 100 [4 2 = 2y9/2) |
=100(3—3) = (1) (20— 6) =93.331b
(b) We need to solve 160 = f w(H —y) - 2, /y dy for h. 160 = 100 (F-2)=>H=31L

42. Suppose that h is the maximum height. Using the coordinate system given in the text, we find an equation for

the line of the end plate's right-hand edge is y = % X = X= % y. The total width is L(y) = 2x = % y and the

h
depth of the typical horizontal strip at level y is (h — y). Then the force is F = fo w(h — y)L(y) dy = Fpax,

h h
where F, = 6667 Ib. Hence, Fux = w [, (h—y)- 2y dy = (62.4) (£) [ (hy — y?) dy

2

@) [F-5] e () (5-5) =@ () ()0 =104 ()1 = n= /() ()
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=9 (f—t) (%) =~ 9.288 ft. The volume of water which the tank can holdis V = % (Base)(Height) - 30, where

Height = hand 1 (Base) = 2h = V = (£h?) (30) = 12h? ~ 12(9.288)* ~ 1035 ft*.

43. The pressure at level y is p(y) = w -y = the average
=1 [° L [° 1 []°
pressure isp = ; j; p(y)dy = Bj; w-ydy =i w [7}0

=(¥) (%2) = ¥ This is the pressure at level 2, which

is the pressure at the middle of the plate.

b b b 27 b
44. The force exerted by the fluid is F = f w(depth)(length) dy = f w-y-ady=(w-a) f ydy =(w-a) {%}
0 0 0 0

=w (%) = (‘%b) (ab) = p - Area, where p is the average value of the pressure.

0
45. When the water reaches the top of the tank the force on the movable side is f ,62.4) (2 4 — y2) (—y) dy

= ©24 [ (4—y) " (2y) dy = 2. H3a-y )3/2} = (62.4) (2) (4%/2) = 332.8 ft - Ib. The force

compressing the spring is F = 100x, so when the tank is full we have 332.8 = 100x = x ~ 3.33 ft. Therefore the
movable end does not reach the required 5 ft to allow drainage = the tank will overflow.

46. (a) Using the given coordinate system we see that the total
width is L(y) = 3 and the depth of the strip is (3 — y).

Thus, F = j: w(3 —y)L(y)dy = f:(62,4)(3 —vy)-3dy
3 573
= @40) [, G-y dy = 62493 [y~ 5]

=(624)(3) (9 —3) = (62.4)(3) (3) = 842.41b
(b) Find a new water level Y such that Fy = (0.75)(842.4 Ib) = 631.8 Ib. The new depth of the stripis (Y —y) and Y is

Y Y
the new upper limit of integration. Thus, Fy = j; w(Y —y)L(y)dy = 62.4 j; (Y —y)-3dy

— ©24)3) [, (Y = y) dy = (624)3) [Yy . Yﬂ — (62.4)(3) (Y2 Yz) — (62.4)(3) (YT) . Therefore,

Y = \/(6225;(%) = \/12“6 V6.75 ~ 2.598 ft. So, AY =3 —Y ~ 3 —2.598 ~ 0.402 ft ~ 4.8 in

6.6 MOMENTS AND CENTERS OF MASS

1. Since the plate is symmetric about the y-axis and its density is
constant, the distribution of mass is symmetric about the y-axis
and the center of mass lies on the y-axis. This means that
X = 0. It remains to find y = Mﬁ We model the distribution of

mass with vertical strips. The typical strip has center of mass:

(X &,):( X +4> length: 4 — x2, width: dx, area:

dA = (4 — x?) dx, mass: dm = § dA = 6 (4 — x?) dx. The moment of the strip about the x-axis is
Y dm = ("QTH) 5(4—x¥)dx = g (16 — x*) dx. The moment of the plate about the x-axis is M, = f Y dm

:f,22§(16—x4) dx =4 {167{—’(5—5]2 =4 [(16' _2?) - (—16-24-2?5)} = %2(32—%) = '25—8'5 The mass of the
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2 1285
plateisM = [ §(4—x*) dx =6 [4X - ";} L= 26 (8 — §) = 32, Thereforey = Y = ( 5;> = 12, The plate's center of

|
|
wfig
g
S~—|
|

- - 12
mass is the point (X,y) = (0, 2).

2. Applying the symmetry argument analogous to the one in
Exercise 1, we find X = 0. To findy = X , we use the
vertical strips technique. The typical stnp has center of
mass: (X ,y )= ( ,Bx ) length: 25 — x?, width: dx,
area: dA = (25 — x?)dx, mass: dm = § dA = § (25 — x?) dx.
The moment of the strip about the x-axis is

Y dm = (ZST”‘)) (25 —x¥) dx =4 (25— x%)* dx. The moment of the plate about the x-axis is M, = J¥ dm
5 5
— [res—xax=1f ¢ 625—50x2+x4)dx:§[625x 50 43 4 X } 5:2.5(625-5—53—0.53+%)

=6-625(5—-2+1)=06-625-(3). ThemassoftheplateisM:fdm:f5 (f5(25—x2)dx:6[25){—"—3}5

3
55% (3)
o5 (0)

)

-5

=26 (53 53) = ;—‘ 6 - 53. Therefore y = MM = = 10. The plate's center of mass is the point (X,y) = (0, 10).

[SIEN SN

= —x = 2x—x}=0

= X(2—-x) =0 = x =0orx =2. The typical vertical

(x=x)+ H))
2

3. Intersection points: X — X

strip has center of mass: (X ,y ) = (x,
= (x, — X;) ,length: (x — x?) — (—x) = 2x — x?, width: dx,

area: dA = (2x — x?) dx, mass: dm = § dA = § (2x — x?) dx.
The moment of the strip about the x-axis is

Y dm = (f ";) 8 (2x — x?) dx; about the y-axis itis X dm = x - § (2x — x?) dx. Thus, M, = f’)? dm

—5(2-%) =52 0-9)
x/l

2 2
=-—M, = fxdm fx& foQ)dx—éfO(2x2—x3):6[%x3—4} :6(2-;3—2):5'24:42;

2 4
:ff Ex?)(2x —x)dx =13 0(2)(37744)dx:f%{%1 ]

19

0 3 4 12 3
2
M = dm:j;) 5(2X7X2)dX:§f (2xfx2)dx:6[x27§}026(4f§) = % Therefore, X = %
=) () =tandy=%=(-%) (%) =-2 = &,y = (1, 2) is the center of mass.
4. Intersection points: x> —3 = —2x?> = 3x> -3 =0

= 3x—1Dx+1)=0 = x=—1lorx=1. Applying the
symmetry argument analogous to the one in Exercise 1, we
find X = 0. The typical vertical strip has center of mass:

X = (x 2550 = (2.

length: —2x? — (x? — 3) = 3 (1 — x?), width: dx,

area: dA = 3 (1 —x?) dx, mass: dm = § dA = 36 (1 — x2) dx.
The moment of the strip about the x-axis is
Vdm=36(-x>-3)(1-x)dx =36 (x* +3> - x> = 3)dx = 36 (x* +2x> = 3) dx; M, = [ ¥ dm

1
=30 2 =35 [$ B -] =Feee2 (b2 o3) =36 (Rl = - 2,
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1 371 ‘
M= [dm=35[ (1-x")dx=36 [x=%| =38-2(1—1) =45 Therefore,y = § = — £32 = — ¢
= (X,5) = (0,— %) is the center of mass.
The typical horizontal strip has center of mass:
X,¥)= ( ,y) length: y — y?, width: dy,
=y-y3
area: dA = (y —y?) dy, mass: dm = §dA = 6 (y — y®) dy. y-y
The moment of the strip about the y-axis is
2
de—é( )(y y)dy =35 (y -y’ dy
= % (y? — 2y* + y%) dy; the moment about the x-axis is X
¥ dm = 6y (y — y3) dy = 6 (y? — y*) dy. Thus,MX:fy dm:&fo (y?—yHdy =6 [% — %]025(%7 %) = f—‘s,

s T 5 711 s
M, fxdm-—fw—2y+y>dy=%[zi—%+%]o=%<%—%+%):%(%ZIOS,M J am

4 _ —
y%) dy [Y?_YZ}O 5(%—1):%Therefore,x:%:(%)(%)z%amdy=%=(¥)(%)
,Y)

_ (16 8
= (T 1) is the center of mass.

Intersection points: y =y? —y = y?> -2y =0

= y(y—2)=0 = y=0ory = 2. The typical
horizontal strip has center of mass:

&)= (E220y) = (30y)

length: y — (y? —y) = 2y — y?, width: dy,

area: dA = (2y — y?) dy, mass: dm = § dA = 6 (2y — y?) dy.
The moment about the y-axis is'X dm = g -y2 (2y — y?) dy

= £ (2y® — y*) dy; the moment about the x-axis is ¥ dm = 8y (2y — y?) dy = 6 (2y*> — y*) dy. Thus,
~ 2 12 ~
M= [Vdm= (o2 —y)ay=6[F - %] =o(f-Y%)=1a-3=%:M=[Ydm
2 . 512 2
=Jrer ey = [r o] =t = () = M= fam= 5oy -y

= oy %] =0 =% Theretore, x = 3 = (%) (3) = Fandy =3 = (%) (3) =1

0
= (X,y) = (%, 1) is the center of mass.

Applying the symmetry argument analogous to the one used
in Exercise 1, we find X = 0. The typical vertical strip has

center of mass: (X ,¥ ) = (x, °3*), length: cos x, width: dx,

area: dA = cos x dx, mass: dm = 6 dA = 6 cos x dx. The

COS X

moment of the strip about the x-axis is'y dm = 6 - - cos x dx

=% cos?xdx = & (12228 dx = 2 (1 + cos 2x) dx, thus,

T2 ) . P o/
M, :f?/dm:fiﬂ;%(l—{—cost)dx:%[x+5‘“22"]_/:/2 %[(%+0)—(—g)] :%”;M:fdmzéfiﬂ/zzcosxdx

= 4[sin x] /“/2 = 26. Therefore,y = % = 4‘% =3 = Xy= (O, "—g) is the center of mass.
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8. Applying the symmetry argument analogous to the one used
in Exercise 1, we find X = 0. The typical vertical strip has

center of mass: (X, ) = (x, SC‘;") , length: sec? x, width: dx,
area: dA = sec? x dx, mass: dm = ¢ dA = § sec? x dx. The

moment about the x-axis isy dm = (%) (6 sec? x) dx

/4 ~

/4
= Ssectxdx. M, = f y dm = g f—~/4 sec’ x dx

2 —7/4

/4 /4 /4 37 /4
_ ¢ 2 2 _ s 2 2 é 2 _ § [(tanx) s m/4
— 5fim(tan x+ 1) (secx) dx = 5 f—w/zt (tan x)* (sec” x) dx + 5];/4560 xdx =3 [ 3 } s + ¢ [tan x]_ﬂ/4

/4 .
=R (-] -DI=t+6=% ;M= [dmn=4¢ Lﬂsec?xdx = 5[tanx]jj/4 = 6[1 — (—1)] = 26.

S _ M _ (4 _2 == — (0 2);

Therefore, y = 3+ = (?5) (%) =5 => Xy= (0, 5) is the center of mass.

9. Since the plate is symmetric about the line x = 1 and its
density is constant, the distribution of mass is symmetric
about this line and the center of mass lies on it. This means
that X = 1. The typical vertical strip has center of mass:

(r)\(.; 73\/ ) = (X, (2x7x2)+2(2x274x)> _ (X, xz—TZX) ,
length: (2x — x?) — (2x? — 4x) = —3x? 4+ 6x = 3 (2x — x?),
width: dx, area: dA = 3 (2x — x?) dx, mass: dm = § dA
= 36 (2x — x?) dx. The moment about the x-axis is
Y dm = 36 (x> — 2x) (2x — x?) dx = —%6(x2—2x)2dx

y=212—4z

2 2
=—36(x" —4x® +4x%) dx. Thus,MXZI?dm :—j;%6(x4—4x3—|—4x2)dx:—§6{";—x‘ﬂ—%x?’]o

S 3 (P ) 32 (o 14 D) =30 2 (S < %M fum

3

2 ‘
:ﬁ236(2xfx2)dx:36 {fo%]O:36(4f§) = 45. Therefore,y = Y = (— &) (L) = -2

= (X,y) = (1, — %) is the center of mass.

10. (a) Since the plate is symmetric about the line X =y and
its density is constant, the distribution of mass is
symmetric about this line. This means that X =y. The
typical vertical strip has center of mass:

(X,y)= (X, v 92_"2) , length: /9 — x2, width: dx,

area: dA = /9 — x2 dx,
mass: dm = § dA = 6/ 9 — x2 dx.

The moment about the x-axis is

3 3
Vam =06 (L5) Voo dx = § (9 - x¥) dx. Thus, M, = [T dm = [ (9~ x*) dx = § [ox — ¥]

=2027-9)=9M= fdm = fédA =6 fdA = 6(Area of a quarter of a circle of radius 3) = 6 (%) = %2

Therefore,y = 3 = (90) (5%) = 2 = (X,y) = (2, %) is the center of mass.
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(b) Applying the symmetry argument analogous to the one
used in Exercise 1, we find that X = 0. The typical
vertical strip has the same parameters as in part (a).

3
Thus, M, :f?dm:fig(9—x2)dx

— Zf 2) dx = 2(96) = 186;
M:fdm:fédAzéfdA 3
= 6(Area of a semi-circle of radius 3) = § (977) = ? . Therefore, y = % = (186) (9—,2”5) i , the same y
asinpart (a) = (X,y) = (0, 2) is the center of mass.
Since the plate is symmetric about the line x = y and its y
density is constant, the distribution of mass is symmetric
about this line. This means that X = y. The typical vertical
strip has
center of mass: (X ,¥ ) = (x, EEVAAS V;ﬂ‘z> ,
length: 3 — /9 — x2, width: dx,
area: dA = (3 — /9 — x2) dx,
X

mass: dmzédA:6(3—\/9—x2) dx. 3
The moment about the x-axis is

34v9-x2) (3-v9—x2 ‘ ) 3, ‘ ‘
V¥ dm (+ X)( X)d =2[9—(9—x%)]dx = & dx. ThusM:fbidX:Q[:‘]g:%.Thearea
9

equals the area of a square with side length 3 minus one quarter the area of a disk with radius 3 = A = 3? — T

=3%@4—m = M=06A=2%(4—mn). Therefore,y = }* = (%) {—96(44_@] =2 = &Y = (%, 75) isthe

center of mass.

. Applying the symmetry argument analogous to the one used

in Exercise 1, we find that y = 0. The typical vertical strip

1 _ 1
has center of mass: (X ,¥ ) = ( ) g) = (x,0),

length: & — (— %) = 2, width: dx, area: dA = 3 dx,

X3

mass: dm = 6 dA = E dx. The moment about the y-axis is
X dm = x - 2‘sdx—z‘sdx Thus, M, = fxdm f% dx
:26[—%] —2(5(—;4—1) :M; M:fdm:f 28 dx—é[ %]12 (—%—i—l) = 6(322_1). Therefore,

§
i:%:{m} [Magil)}:m = &7 = (:2,0). Also, lim_ X=2.

a

1 )
=2 =2[(-3) - D =2(3) = 1;
M, = [Xdm=["x-8-(2)dx
= lzx(x2)(x2—2)dx:2 ‘xdx = ["2—2}?
—202-1)=4-1=3% M= fdn=[6(2)dx= [ x(2)dx=2 dx=2[x]? =22~ 1) =2. So
x=2=3andy=% =1 = X7 = (,1) is the center of mass.
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14. We use the vertical strip approach:
1 y
M, = f’}\/dm: fo _(ngz) (x —x2) -6 dx
1
= %j; (x? —x1) - 12x dx

:6f1 x3—x5)dx:6[%f%ﬁ}

1

0

—6(L-1 Q,lzl’ x
(3 6) 4 2 1
1 51
M, = [Xdm= [x(x—x)sdx = [ =) 12xdx = 12f (¢ —xhax =125 - %] =12(31- 1)
1
=2=3M :fm fx—x 6dx-12fx—x)dx-12[%—’ﬂ =12(3-7)=1H=1 So
x=2=23andy=23% =1 = (3,1)is the center of mass.

15. (a) We use the shell method: V = fb 27 (;‘:ﬁl‘l}q) (}fgg}lﬁ) dx = f 27X [7 - (— ix)] dx = l67rf14% dx
— 16 [ X2 dx = 167 [2x3/2] 1 = 167 (28— 2) = 2= (8 — ):%

(b) Since the plate is symmetric about the x-axis and its density 6(x) = < 1s a function of x alone, the distribution of its

mass is symmetric about the x-axis. This means that y = 0. We use the vertical strip approach to find X:
4
Myzf'fdmzfl X - [%— (—7)} 6dx_f T 1dx_8f —1/2dx—8[2x1/2} =82-2-2)=16;

M:fdmzﬁ4[\/— ( )] 5dx_8f( ) x_sf X732 dx = 8 [~2x V2] = §[—1 — (~2)] =

=3 =2 =2= (X,y) = (2,0) is the center of mass.

16. (2) We use the disk method: V = [ 7R dx = [ 7 (%) dx = 4r [ x2 dx = 4 [= 1]} = 4n [5- — (=1)]
=7[—-1+4] =37

4 4
(b) We model the distribution of mass with vertical strips: M, = f ¥ dm = f] @ . (%) -odx = fl X% . ﬁdx
4 4 4 4 7 4
:2flx’3/2dx:2[\_/—27} :2[—1—(—2)]:2;My:f?(dm:flx~%~6dx:2flx1/2dx:2[2";/2}1:
4 4
2[8 -2 =2 M= [dn=[2.5ax=2 Lax=2f xV2dax=2[2x12] | =24 ~2) = 4. So
() 1

=Tandy="%=2=1 = (x,) = (,1) is the center of mass.

X

I
sz

ST I o
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(©)

The mass of a horizontal strip is dm = § dA = 6L dy, where L is the width of the triangle at a distance of y above

its base on the x-axis as shown in the figure in the text. Also, by similar triangles we have % = h%y
h 2 37h
= L=(h—y). Thus, M, = [Tdm= [ oy (%) (h—yydy =2 [ (hy —y?) dy = & [%—%L)
h 57 h
:%(%B—h—s)fébh2(2—%): M= [dn=[6()h-ydy="2f (h—Y)dy:i—b[hy—y?]o

= (h2 hz) &’h . S0y = M* = (‘SbThz> (ﬁ) = % = the center of mass lies above the base of the
triangle one-third of the way toward the opposite vertex. Similarly the other two sides of the triangle can be
placed on the x-axis and the same results will occur. Therefore the centroid does lie at the intersection of the

medians, as claimed.

From the symmetry about the y-axis it follows that X = 0. (0,3)
It also follows that the line through the points (0, 0) and |
(0, 3) is amedian = ?:%(3—0):1 = (X,y) =(0,1). +
(-1,0) ! (+1,0)

From the symmetry about the line x =y it follows that (0,1)
X =Y. It also follows that the line through the points (0, 0)
and(2,2)1samed1an:>y—x—% (3-0)=3 (0, 0)

- ’
= xy=(31). (1,00
From the symmetry about the line x = y it follows that (0,a)

X =Y. It also follows that the line through the point (0, 0)

and (3,%) isamedian = y=x=3(3-0)=1a (0, 0)
= Xy = (%7 %) 0}

The point of intersection of the median from the vertex (0, b) (0,b)

to the opposite side has coordinates (0, 2)

=y=0b-0-1=2andx=(4-0)-3=12

7

= &N =(3%). (0,0) o)
From the symmetry about the line x = 5 it follows that ( ,b)
X = §. Italso follows that the line through the points
g )and (g b) isamedian = y=1(b—-0) =2
(a,0)

(0,0)
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23. y=x? = dy=1x"12dx
= ds = /(dx)2 + (dy)? = /1 + & dx;
2
M, =6 \/xy/1+ & dx
2 2
st ia=3 [+ )]

=2 [+ - (")

24, y=x3 = dy = 3x%dx

= dx = 4/(dx)? + (3x2 dx)* = /1 + 9x* dx; I
1
:5f x34/1 4 9x4 dx;
[u=14+9x* = du=36x3dx = 3—6du—x3dx

x=0=u=1,x=1 = u=10]
- M _5f1 36 0% du = 5 [Fu??] 102%(103/2_1) '

25. From Example 4 we have M, = j: a(a sin )(k sin ) d9 = a2k\/: sin? 6 df = "‘27]“/:(1 —cos 20) df = 2‘;—" (6 — sin2f] (T)

:azé‘”;My:j: a(acos@)(ksin@)d@:anLﬂsinQCOSHdGZ%[sinzﬁ]g:0;M:fonaksinﬁdﬁzak[fcosﬁ]g

= 2ak. Therefore,X = 37 =0andy = 3 = (#) () =% = (0,2) is the center of mass.

26. szf?dm:ﬁw(asin9)~6~ad9
= ['(a? sin ) (1 + kcos 0]) d6

/2
= aZJ; (sin 8)(1 + k cos 8) df

+af jz(sin 6)(1 — k cos §) df
/2 /2 & g
= a2f0 sin 6 d§ + a2kf0 sin @ cos 0 df + azfmsin 6do — a’k L/Zsin 6 cos 0 df

/2 in? /2 T in’ T
=a?[—cos 6’]0/ + aZk [%] . + a?%[— cos 0]71/2 — a’k [%] e
=220 — (— D]+ 2%k (L —0) +a?[—(—1) — 0] —a%k (0 — 1) = 2% + &K 2% 4 ok — 252 4 2%k = 2%(2 + k);
My:f?(dm:foﬂ(acose)-&-adﬂzj:(aQCOSG)(l—i—kkosH\)dG

/2 ™
= a2f0 (cos B)(1 +kcos 0)df + azfm (cos 0)(1 —k cos #) df
/2 /2 ™
=a’ fo cos df + a’k [ (1+228)df + a L cos 6 df — a2kf (128 dg
J .

= a’[sin 0]”/2+“27k[0+““229]”/ +a’[sin 017, — [9+Sm20]”/2
:a2(170)+a%k[(%*0)*(0+0)]+a2(071)7%[(ﬂ'+0)7(§+0)]:a2+2ﬁ¥7a27aé¥:0;
M= [ 6-ad0=af (1 +klcosf)do=a [ (1 +keosf)dd+af (1 —kecosd)df
:a[9+k5in9]ﬂ/2+a[9—k5in9]f/2:a[(5+k)— 0] +al(r+0)— (2 —K)]

=% fak+a(Z+k) =ar+2ak = a(m +2k). SoX = 32 = Oandy = Y = QY _ 220

(0 2a+ka

P ) is the center of mass.
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27. f(x) = x + 6, g(x) = x2, f(x)

=g(x)=x+6=x°
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=>x2—x—-6=0=>x=3,x=-2;:6=1
3
Mfoz[(X+6)—x2]dx: [%x2+6x—%x
(3+18-9)—(2—12+8) =15
:125/6f (x+06) —XZ]dX—%f[ + 6x — x*]dx
3
_%Xﬂ—z
3
(_§+12_4):%??:ﬁfz%{(XJr@Z—(xz)z}
L3 4 6x2+36x — 1x°]7 ) = 2o (94544108 — 283) — 3 (-8

125
= (4, 4) is the center of mass.

3
T

=(0+27-8) - &% X% + 12x + 36 — x*]dx

3
125

28. f(x) =2,g(x) =x*(x + 1), f(x) = g(x) = 2 =x*(x + 1)
=x34+x2-2=0=>x=1;6=1

1 1
M= [[2-xx+1D]dx= [ [2—x —xdx
=il =i g 0= 8 g (x)=2 (x+1)
X= %ﬁ) X2 = x*(x+ D]dx = 2 | [2x — x* — x]dx .
~ B b ) 1
= %(1 —5—3) 0= %;y: 17}12]2%[22 — (x*(x+ 1))2}‘1?(: %j;l[4—x6—2x5 — x*dx
= {5 [4x = xT = 3x - %XS](I) =g@-1-1-1)-0=5 = (& ) is the center of mass.

29. f(x) = x2, g(x) = x>(